프로젝트

일반

사용자정보

개정판 072a26bd

ID072a26bdd58896c922d5e4fb2acc2a6ee93a1a00
상위 48e59210
하위 cca1ea73

함의성이(가) 4년 이상 전에 추가함

issue #1336: package test

차이점 보기:

DTI_PID/WebServer/run.py
1 1
from app import app
2 2

  
3 3
if __name__ == '__main__':
4
    app.run(port=8080, debug=True, host='0.0.0.0')
5
    #app.run(debug=False)
4
    #app.run(port=8080, debug=False)#, host='0.0.0.0')
5
    app.run(debug=False)
DTI_PID/WebServer/symbol_training/src/doftech_dataset.py
51 51
                img_path = self.img_path_list[index]
52 52
                self.img_list.append(cv2.imread(img_path))
53 53

  
54
                '''
54 55
                if self.is_training==True:
55 56
                    if self.use_rescale == True:
56 57
                        new_image_list, new_label_list = self.rescale_func([self.img_list[-1]], [self.anno_list[-1]])
57 58

  
58 59
                        self.img_list.extend(new_image_list)
59 60
                        self.anno_list.extend(new_label_list)
60
        '''
61
                '''
62
        
61 63
        if self.is_training==True:
62 64
            if self.use_rescale == True:
63 65
                new_image_list, new_label_list = self.rescale_func(self.img_list, self.anno_list)
64 66

  
65 67
                self.img_list.extend(new_image_list)
66 68
                self.anno_list.extend(new_label_list)
67
        '''
69
        
68 70

  
69 71
    def rescale_func(self, img_list, anno_list):
70 72
        #scale_array = [0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
DTI_PID/WebServer/symbol_training/train.py
88 88
    learning_rate_schedule = {"0": 1e-5, "5": 1e-4,
89 89
                              "80": 1e-5, "110": 1e-6}
90 90

  
91
    training_params = {"batch_size": opt.batch_size,
91
    training_params = {"batch_size": 1,#opt.batch_size,
92 92
                       "shuffle": True,
93 93
                       "drop_last": True,
94 94
                       "collate_fn": custom_collate_fn}
......
217 217
                best_epoch = epoch
218 218
                print("SAVE MODEL")
219 219
                # for debug for each loss
220
                torch.save(model.state_dict(), os.path.join(opt.saved_path, name + "_only_params_" + str(save_count) + "_" + "{:.5f}".format(best_loss) + ".pth"))
220
                #torch.save(model.state_dict(), os.path.join(opt.saved_path, name + "_only_params_" + str(save_count) + "_" + "{:.5f}".format(best_loss) + ".pth"))
221 221
                #torch.save(model, os.path.join(opt.saved_path, name + "_whole_model_" + str(save_count) + "_" + "{:.5f}".format(best_loss) + ".pth"))
222 222
                # save
223 223
                torch.save(model.state_dict(), os.path.join(opt.saved_path, name + "_only_params.pth"))
......
225 225
            else:
226 226
                save_count += 1
227 227
                # for debug for each loss
228
                torch.save(model.state_dict(), os.path.join(opt.saved_path, name + "_only_params_" + str(save_count) + "_" + "{:.5f}".format(te_loss) + ".pth"))
228
                #torch.save(model.state_dict(), os.path.join(opt.saved_path, name + "_only_params_" + str(save_count) + "_" + "{:.5f}".format(te_loss) + ".pth"))
229 229
                #torch.save(model, os.path.join(opt.saved_path, name + "_whole_model_" + str(save_count) + "_" + "{:.5f}".format(te_loss) + ".pth"))
230 230

  
231 231
            # Early stopping

내보내기 Unified diff

클립보드 이미지 추가 (최대 크기: 500 MB)