hytos / DTI_PID / WebServer / app.py @ 9bdbbda1
이력 | 보기 | 이력해설 | 다운로드 (1.97 KB)
1 | 60998ab9 | esham21 | from flask import Flask, jsonify, request |
---|---|---|---|
2 | import cv2 |
||
3 | import numpy as np |
||
4 | import sys, os |
||
5 | 9bdbbda1 | esham21 | import json, base64 |
6 | 60998ab9 | esham21 | |
7 | 9bdbbda1 | esham21 | # craft
|
8 | c64be242 | esham21 | sys.path.insert(0, os.path.dirname(os.path.realpath(__file__)) + '\\CRAFT_pytorch_master') |
9 | 9bdbbda1 | esham21 | # service streamer
|
10 | sys.path.insert(0, os.path.dirname(os.path.realpath(__file__)) + '\\service_streamer_master') |
||
11 | # deep ocr
|
||
12 | 4d2aa82f | esham21 | #sys.path.insert(0, os.path.dirname(os.path.realpath(__file__)) + '\\deep_text_recognition_benchmark_master')
|
13 | c64be242 | esham21 | |
14 | 60998ab9 | esham21 | app = Flask(__name__) |
15 | |||
16 | 9bdbbda1 | esham21 | try:
|
17 | #from model import get_prediction, batch_prediction
|
||
18 | import text_craft |
||
19 | from service_streamer import ThreadedStreamer |
||
20 | |||
21 | streamer = ThreadedStreamer(text_craft.get_text_box_batch, batch_size=64)
|
||
22 | except ImportError as ex: |
||
23 | ex |
||
24 | pass
|
||
25 | |||
26 | 60998ab9 | esham21 | @app.route('/') |
27 | def index(): |
||
28 | return 'Hello Flask' |
||
29 | |||
30 | @app.route('/text_box', methods=['POST']) |
||
31 | def text_box(): |
||
32 | 9bdbbda1 | esham21 | if request.method == 'POST': |
33 | r = request |
||
34 | nparr = np.fromstring(r.data, np.uint8) |
||
35 | |||
36 | img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) |
||
37 | #img = img.reshape(1, -1)
|
||
38 | |||
39 | boxes = text_craft.get_text_box(img, img_path=None, score_path=None, trained_model=os.path.dirname(os.path.realpath(__file__)) + '\\CRAFT_pytorch_master\\weights\\craft_mlt_25k.pth') |
||
40 | |||
41 | return jsonify({'text_box': boxes}) |
||
42 | |||
43 | @app.route('/stream_text_box', methods=['POST']) |
||
44 | def stream_text_box(): |
||
45 | if request.method == 'POST': |
||
46 | r = request |
||
47 | str_imgs = json.loads(r.data) |
||
48 | imgs = [] |
||
49 | for str_img in str_imgs: |
||
50 | str_img = base64.b64decode(str_img) |
||
51 | nparr = np.fromstring(str_img, np.uint8) |
||
52 | img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) |
||
53 | imgs.append(img) |
||
54 | |||
55 | boxes_list = [] |
||
56 | for img in imgs: |
||
57 | boxes = streamer.predict([[img, None, None, os.path.dirname(os.path.realpath(__file__)) + '\\CRAFT_pytorch_master\\weights\\craft_mlt_25k.pth']]) |
||
58 | boxes_list.append(boxes[0])
|
||
59 | return jsonify({'text_box_list': boxes_list}) |
||
60 | 60998ab9 | esham21 | |
61 | if __name__ == '__main__': |
||
62 | 9bdbbda1 | esham21 | app.run(debug=True) |