

SmartPlant P&ID 2014 R1
Automation Programming with VB Course Guide

Version 2014 R1 July 2016 DPID2-TP-100029A

Copyright

Copyright © 2012-2015 Intergraph® Corporation. All Rights Reserved. Intergraph is part of Hexagon.

Including software, file formats, and audiovisual displays; may be used pursuant to applicable software license agreement;
contains confidential and proprietary information of Intergraph and/or third parties which is protected by copyright law, trade
secret law, and international treaty, and may not be provided or otherwise made available without proper authorization from
Intergraph Corporation.

Portions of this software are owned by Spatial Corp. © 1986-2016. All Rights Reserved.

Portions of the user interface are copyright © 2012-2016 Telerik AD.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the government is subject to restrictions as set forth below. For civilian agencies: This was
developed at private expense and is "restricted computer software" submitted with restricted rights in accordance with
subparagraphs (a) through (d) of the Commercial Computer Software - Restricted Rights clause at 52.227-19 of the Federal
Acquisition Regulations ("FAR") and its successors, and is unpublished and all rights are reserved under the copyright laws of
the United States. For units of the Department of Defense ("DoD"): This is "commercial computer software" as defined at
DFARS 252.227-7014 and the rights of the Government are as specified at DFARS 227.7202-3.

Unpublished - rights reserved under the copyright laws of the United States.

Intergraph Corporation
305 Intergraph Way
Madison, AL 35758

Documentation

Documentation shall mean, whether in electronic or printed form, User's Guides, Installation Guides, Reference Guides,
Administrator's Guides, Customization Guides, Programmer's Guides, Configuration Guides and Help Guides delivered with
a particular software product.

Other Documentation

Other Documentation shall mean, whether in electronic or printed form and delivered with software or on Intergraph Smart
Support, SharePoint, or box.net, any documentation related to work processes, workflows, and best practices that is
provided by Intergraph as guidance for using a software product.

Terms of Use

a. Use of a software product and Documentation is subject to the End User License Agreement ("EULA") delivered with
the software product unless the Licensee has a valid signed license for this software product with Intergraph
Corporation. If the Licensee has a valid signed license for this software product with Intergraph Corporation, the valid
signed license shall take precedence and govern the use of this software product and Documentation. Subject to the
terms contained within the applicable license agreement, Intergraph Corporation gives Licensee permission to print a
reasonable number of copies of the Documentation as defined in the applicable license agreement and delivered with
the software product for Licensee's internal, non-commercial use. The Documentation may not be printed for resale or
redistribution.

b. For use of Documentation or Other Documentation where end user does not receive a EULA or does not have a valid
license agreement with Intergraph, Intergraph grants the Licensee a non-exclusive license to use the Documentation or
Other Documentation for Licensee’s internal non-commercial use. Intergraph Corporation gives Licensee permission to
print a reasonable number of copies of Other Documentation for Licensee’s internal, non-commercial use. The Other
Documentation may not be printed for resale or redistribution. This license contained in this subsection b) may be
terminated at any time and for any reason by Intergraph Corporation by giving written notice to Licensee.

Disclaimer of Warranties

Except for any express warranties as may be stated in the EULA or separate license or separate terms and conditions,
Intergraph Corporation disclaims any and all express or implied warranties including, but not limited to the implied warranties
of merchantability and fitness for a particular purpose and nothing stated in, or implied by, this document or its contents shall
be considered or deemed a modification or amendment of such disclaimer. Intergraph believes the information in this
publication is accurate as of its publication date.

The information and the software discussed in this document are subject to change without notice and are subject to
applicable technical product descriptions. Intergraph Corporation is not responsible for any error that may appear in this
document.

The software, Documentation and Other Documentation discussed in this document are furnished under a license and may
be used or copied only in accordance with the terms of this license. THE USER OF THE SOFTWARE IS EXPECTED TO
MAKE THE FINAL EVALUATION AS TO THE USEFULNESS OF THE SOFTWARE IN HIS OWN ENVIRONMENT.

Intergraph is not responsible for the accuracy of delivered data including, but not limited to, catalog, reference and symbol
data. Users should verify for themselves that the data is accurate and suitable for their project work.

Limitation of Damages

IN NO EVENT WILL INTERGRAPH CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL
INCIDENTAL, SPECIAL, OR PUNITIVE DAMAGES, INCLUDING BUT NOT LIMITED TO, LOSS OF USE OR
PRODUCTION, LOSS OF REVENUE OR PROFIT, LOSS OF DATA, OR CLAIMS OF THIRD PARTIES, EVEN IF
INTERGRAPH CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

UNDER NO CIRCUMSTANCES SHALL INTERGRAPH CORPORATION’S LIABILITY EXCEED THE AMOUNT THAT
INTERGRAPH CORPORATION HAS BEEN PAID BY LICENSEE UNDER THIS AGREEMENT AT THE TIME THE
CLAIM IS MADE. EXCEPT WHERE PROHIBITED BY APPLICABLE LAW, NO CLAIM, REGARDLESS OF FORM,
ARISING OUT OF OR IN CONNECTION WITH THE SUBJECT MATTER OF THIS DOCUMENT MAY BE BROUGHT BY
LICENSEE MORE THAN TWO (2) YEARS AFTER THE EVENT GIVING RISE TO THE CAUSE OF ACTION HAS
OCCURRED.

IF UNDER THE LAW RULED APPLICABLE ANY PART OF THIS SECTION IS INVALID, THEN INTERGRAPH LIMITS
ITS LIABILITY TO THE MAXIMUM EXTENT ALLOWED BY SAID LAW.

Export Controls

Intergraph Corporation’s software products and any third-party Software Products obtained from Intergraph Corporation, its
subsidiaries, or distributors (including any Documentation, Other Documentation or technical data related to these products)
are subject to the export control laws and regulations of the United States. Diversion contrary to U.S. law is prohibited. These
Software Products, and the direct product thereof, must not be exported or re-exported, directly or indirectly (including via
remote access) under the following circumstances:

a. To Cuba, Iran, North Korea, Sudan, or Syria, or any national of these countries.

b. To any person or entity listed on any U.S. government denial list, including but not limited to, the U.S. Department of
Commerce Denied Persons, Entities, and Unverified Lists,
http://www.bis.doc.gov/complianceandenforcement/liststocheck.htm, the U.S. Department of Treasury Specially
Designated Nationals List, http://www.treas.gov/offices/enforcement/ofac/, and the U.S. Department of State Debarred
List, http://www.pmddtc.state.gov/compliance/debar.html.

c. To any entity when Licensee knows, or has reason to know, the end use of the Software Product is related to the
design, development, production, or use of missiles, chemical, biological, or nuclear weapons, or other un-safeguarded
or sensitive nuclear uses.

d. To any entity when Licensee knows, or has reason to know, that an illegal reshipment will take place.

Any questions regarding export or re-export of these Software Products should be addressed to Intergraph Corporation’s
Export Compliance Department, Huntsville, Alabama 35894, USA.

Trademarks

Intergraph, the Intergraph logo, PDS, SmartPlant, FrameWorks, I-Sketch, SmartMarine, IntelliShip, ISOGEN, SmartSketch,
SPOOLGEN, SupportManager, SupportModeler, Sapphire, and Intergraph Smart are trademarks or registered trademarks
of Intergraph Corporation or its subsidiaries in the United States and other countries. Hexagon and the Hexagon logo are
registered trademarks of Hexagon AB or its subsidiaries. Microsoft and Windows are registered trademarks of Microsoft
Corporation. ACIS is a registered trademark of SPATIAL TECHNOLOGY, INC. Infragistics, Presentation Layer Framework,
ActiveTreeView Ctrl, ProtoViewCtl, ActiveThreed Ctrl, ActiveListBar Ctrl, ActiveSplitter, ActiveToolbars Ctrl, ActiveToolbars
Plus Ctrl, and ProtoView are trademarks of Infragistics, Inc. Incorporates portions of 2D DCM, 3D DCM, and HLM by
Siemens Product Lifecycle Management Software III (GB) Ltd. All rights reserved. Gigasoft is a registered trademark, and
ProEssentials a trademark of Gigasoft, Inc. VideoSoft and VXFlexGrid are either registered trademarks or trademarks of
ComponentOne LLC 1991-2013, All rights reserved. Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks
of Oracle Corporation and/or its affiliates. Tribon is a trademark of AVEVA Group plc. Alma and act/cut are trademarks of
the Alma company. Other brands and product names are trademarks of their respective owners.

Table of Contents

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 3

Table of Contents

Preface...10

Chapter 1: Review of Visual Basic Concepts ...11

1. Objectives ..11

2. Advantages of Using Visual Basic ...11

3. Creating a Standard Executable Basic Program using VB11

3.1. Module-Level Code ...11

3.2. Programming features in VB ...11

3.3. Debugging a standard executable ..12

3.4. Compile and Run a Standard executable ...13

4. Visual Basic Environment ..13

4.1. Toolbox ..13

4.2. Project Explorer Window ..13

4.3. Properties Window...14

4.4. Object Browser for Browsing the Libraries ...14

4.5. Immediate, Locals, and Watch Window for Debugging..................................14

4.6. References ..14

4.7. Components ...15

4.8. Project Properties ...15

5. Using Visual Basic ...15

5.1. Controls ..15

5.2. Forms ...15

5.3. Procedures ..15

5.4. Variables and Constants: Declaration, Scope, and Life15

5.5. DataTypes ..16

6. Files in the Visual Basic Project ..16

6.1. Project ..16

6.2. Standard Module ..16

6.3. Class Module ...16

6.4. Form Module..17

7. Object-Oriented Concepts..17

7.1. Object ...17

Table of Contents

4 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

7.2. Class ...17

7.3. Methods and Properties of Classes ..17

8. Creating Classes ..18

8.1. Create a Class Module ...18

8.2. Create Properties and Methods ..19

9. Lab..19

10. Review ...19

Chapter 2: Creating and Running Active-X Client Components20

1. Objectives ..20

2. Introduction ...20

3. Creating a Client Component ..20

4. Declaring and Creating an Object Variable of Server Component20

5. Lab..21

6. Review ..21

Chapter 3: Creating and Running Active-X Server Components22

1. Objectives ..22

2. Active-X Server Components ...22

3. Creating an Active-X Server Component ...22

4. Create a Client Application That Uses The Active-X Server22

5. Lab..22

6. Review ..22

Chapter 4: Creating Active-X Server Components Supports Interfaces23

Table of Contents

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 5

1. Objectives ..23

2. Active-X Server Components ...23

3. Interfaces ...23

4. Creating an Active-X Server Component with Interface23

4.1. Create an abstract class for the interface ...23

4.2. Create an implementation of the abstract class or interface23

4.3. Create a client application that uses the implementation24

5. Lab..24

6. Review ..24

Chapter 5: Data Model - Fundamentals..25

1. Objective ..25

2. Data Model in Object-Oriented Terminology ..25

3. Data Model Represented using UML ..25

3.1. Object Classes ..25

3.2. Relationships ..26

4. Review ..27

Chapter 6: Logical Model Automation (Llama) ..28

1. Objectives ..28

2. Introduction ...28

3. Items from the DataModel ...28

3.1. Object Classes ..28

3.2. Attributes..28

3.3. ItemAttribution ..29

3.4. Relationships ..30

4. Items outside of the Data Model (LMA) ...31

4.1. LMADatasource ...32

Table of Contents

6 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

4.2. Labs ..32

4.3. LMAItem ..33

4.4. LMAAttribute ..33

4.5. Labs ..33

4.6. LMACriterion ..34

4.7. LMAFilter ..34

4.8. LMAEnumAttList ..35

4.9. LMAEnumeratedAttribute ...35

5. General Issues ...35

5.1. Properties and Methods of Collections ...35

6. Labs ..36

7. Review ..36

Chapter 7: SPPID Data Model..37

1. Objectives ..37

2. Introduction ...37

3. Model Data ..37

3.1. ModelItem ..37

3.2. Labs ..38

3.3. PlantItem ..39

3.4. Logical Connectivity ..41

4. Drawing Data ..42

4.1. Drawing ..43

4.2. Representation ...44

4.3. LabelPersist ..44

4.4. Symbol ...44

4.5. Connector ...45

4.6. BoundedShape ...46

4.7. Labs ..46

5. Additional Data Model ...46

5.1. Relationship ...46

5.2. Labs ..47

5.3. PlantGroup ...47

5.4. Workshare ..48

5.5. As-Build/Project ...50

Table of Contents

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 7

5.6. T_OptionSetting Labs ..51

5.7. Special Issues ...51

Chapter 8: Placement Automation ...52

1. Objectives ..52

2. Plaice Library ...52

2.1. Create an Item in the Stockpile ..52

2.2. Place an Symbol on the Drawing ...52

2.3. Place Labels ...52

2.4. Place Piperun ...53

2.5. Join Piperuns ..53

2.6. Place Bounded Shapes ...53

2.7. Place Assemblies ...54

2.8. Place Gaps ..54

2.9. Remove a Symbol from the Drawing ..54

2.10. Delete an Item from Model ..54

2.11. Replace Symbol ...55

2.12. Replace Label...55

2.13. Replace OPC ..55

2.14. Apply Parameters to Parametric Symbols ...55

2.15. Locate Connect Point ...55

2.16. Datasource ...55

2.17. PIDSnapToTarget ..56

2.18. SetCopyPropertiesFlag ...56

2.19. Datasource ...56

2.20. Place Connectors..56

3. Misc. ...57

4. Labs ..57

Chapter 9: Using PIDAutomation to create, open and close drawings58

1. Objectives ..58

2. Three Important Functions ..58

2.1. PIDAutomation.Application.Drawings.Add ..58

2.2. PIDAutomation.Application.Drawings.OpenDrawing58

2.3. PIDAutomation.Drawing.CloseDrawing ...59

3. Labs ..59

Table of Contents

8 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

Chapter 10: Calculation/Validation using Active-X Server Components60

1. Objectives ..60

2. ILMForeignCalc Interface ...60

2.1. DoCalculate ...60

2.2. DoValidateItem ..60

2.3. DoValidateProperty ...61

2.4. DoValidatePropertyNoUI ..61

3. Objects passed from the Modeler ..62

3.1. LMADataSource ..62

3.2. LMAItems ..62

3.3. PropertyName ..62

3.4. Property Value ...62

4. Special Issues ...62

4.1. Updating the Property Grid ..62

4.2. Commit command ...62

4.3. Automatically Fire Up Validation ...62

5. Labs ..63

Chapter 11: Delivered Source Code ...64

1. Objectives ..64

2. Delivered Validation Programs ...65

2.1. PlantItem Validation ..65

2.2. Unit Validation ..65

2.3. ItemTag Validation ..65

2.4. OPC Validation ..67

2.5. Drawing Revision Validation ..67

2.6. SyncSlopeRiseRunAngle ...67

3. Import Interface and Delivered Import Code ..67

4. CopyTransofmation Interface and Program ..68

5. Labs ..68

Chapter 12: Using LMAutomationUtil to get from/to information69

Table of Contents

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 9

1. Objectives ..69

2. Important Methods ...69

2.1. RunsNavigation ..69

2.2. RunsNavigationAll...69

3. Logic of from/to macro ...70

4. Labs ..71

10 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

Preface
This document is a user’s guide for SmartPlant P&ID 2014 R1 automation

programming with VB course.

Send documentation comments or suggestions to PPMdoc@intergraph.com.

mailto:PPMdoc@intergraph.com.?subject=Documentation%20Comments

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 11

CHAPTER 1: REVIEW OF VISUAL BASIC CONCEPTS

1. OBJECTIVES

In this chapter you will review:

 How to write simple standard executables

 The Visual Basic environment

 Some object-oriented concepts

2. ADVANTAGES OF USING VISUAL BASIC

 Visual Basic is an extension of the BASIC programming language utilizing the object-oriented

technology.

 It provides an easy-to-use development environment that simplifies the creation of applications

requiring graphical user interfaces.

 It supports OLE Automation programming because it is COM compliant.

 COM (Component Object Model) specifies binary level interfaces how components are created and

how client applications connect to components.

 OLE (Object Linking and Embedding) Automation further specifies interfaces that manipulate an

application’s objects from outside of the application.

3. CREATING A STANDARD EXECUTABLE BASIC PROGRAM USING VB

3.1. Module-Level Code

 Standard Basic code is written in Modules. A module is a code segment that defines functions and

subroutines.

3.2. Programming features in VB

3.2.1. Start-up Object

 Start-up function is the Sub Main() in the Module

3.2.2.Loop structures

 Do …Loop While

12 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

 Do…Loop Until

 Do While …Loop

 Do Until …Loop

 For … Next

 Exit statement can be used to exit a Do or For loop

3.2.3. Conditional IF structure

 IF … THEN

 IF … THEN … ELSE … ENDIF

 IF … THEN … ELSEIF … THEN … ELSE … ENDIF

3.2.4.Select Case Statements

 SELECT CASE .. CASE .. CASE … END SELECT

3.2.5.String concatenation

 Use the ‘&’ symbol to concatenate strings into a variable.

3.2.6.Help feature

 Place the cursor on a keyword and press the F1 key to obtain help on the keyword

3.3. Debugging a standard executable

 Use the Breakpoints to stop a program.

 Use Watch expressions

 Step into, Step over, and Step out of.

 View the Call Stack.

 Run commands in the Immediate window.

 Examine objects in the Locals window.

 The Debug object with the Print method.

 The Err object and its properties: Number, Description, Source, Clear, Raise.

 The On Error statement.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 13

3.4. Compile and Run a Standard executable

 Select File->Make->…

 Enter the name of the executable file

4. VISUAL BASIC ENVIRONMENT

4.1. Toolbox

4.2. Project Explorer Window

14 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

4.3. Properties Window

4.4. Object Browser for Browsing the Libraries

The Object Browser can be opened from the Standard Toolbar or from the View command on the

menu. The Object Browser is used to examine the methods and properties of the classes in object

libraries.

4.5. Immediate, Locals, and Watch Window for Debugging

The Immediate, Locals, and Watch Windows can be opened from the Debug Toolbar or from the

View command on the menu. These windows are used to examine the values of variables and

objects at run time.

4.6. References

The Project/References… command pulls up a dialog to select libraries that can be referenced into

the current project. By referencing these libraries, the type information of the classes in these

libraries are available to the programmer during code development and compilation.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 15

4.7. Components

The Project/Components… command pulls up a dialog to select the ActiveX components that can be

included into the current project. ActiveX components can be used to provide user-interface and

code level functionalities to the project.

4.8. Project Properties

 Convert between standard EXE and Active-X dlls.

 Select start-up component.

 Set compatibility.

5. USING VISUAL BASIC

5.1. Controls

 Controls are predefined classes with graphical representations.

 Controls can be added to the project by dragging onto a form from the Toolbox.

 Every instance of a control has a unique name within the form

5.2. Forms

 Forms are like Controls, with properties, methods, and events.

 Forms are containers for Active-X controls.

5.3. Procedures

 Two types: Event Procedures and General Procedures

 General Procedures include Function procedures and Subroutine procedures

5.4. Variables and Constants: Declaration, Scope, and Life

 Always use the keywords Option Explicit at the top of every module. This will ensure that variables

are always defined before they are used.

 Use Dim, Private, or Public to declare variables.

 Constants are declared with the CONST keyword

16 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

 Procedure-Level Variables are declared in a procedure and is recognized only within the procedure.

Procedure-level are created at the start of the procedure and destroyed at the close of the

procedure.

 Form-Level Variables are declared outside of procedures but inside a General Declarations section

of the form and is global within the form. Public variables alone will be accessible to procedures

outside of the form as a property of the form. They have to be referenced using the name of the

form, such as frmMyForm.Property1. They are available from the instant the form is created until it is

destroyed (set frmMyForm = Nothing).

 Standard Module-level Variables are declared within the General Declarations section of the Module.

Private variables are available only within the Module, while Public variables are available as global

variables within the whole project.

5.5. DataTypes

 Data Types include Integers, Longs, Double, String, Variant, etc.

 Variants hold all datatypes but not objects. A variant can have a NULL value, indicating that i t is

undefined.

6. FILES IN THE VISUAL BASIC PROJECT

6.1. Project

 A Project consists of all of the form modules, standard modules, class modules, controls, references,

and settings required to compile and run the application.

 It is saved as a *.vbp file.

 A project is synonymous with Library or Program, depending on the context.

6.2. Standard Module

 It is a standard code module.

 It is saved as a *.bas file.

6.3. Class Module

 It is a template for an object.

 An interface is an abstract class.

 It is saved as a *.cls file.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 17

6.4. Form Module

 A Form is a Class definition.

 It is a container for controls.

 It has properties and methods like other classes.

 It has pre-defined Events just as for Controls.

 It is saved as a *.frm file.

7. OBJECT-ORIENTED CONCEPTS

7.1. Object

An object is a collection of data with related functions and subroutines that can be grouped as a

single unit.

7.2. Class

 A class is a template for an object. It contains the structure and definitions of all of the parts of an

object.

 A class is initialized when an object instance of the class is created. Eg:

set obj1 = New Class1

 A class is terminated when the object instance of the class is set to nothing. Eg:

set obj1 = Nothing

 The name of the class can be edited in the Property Box for the class module. This name can be

different from the filename under which the class module is saved.

7.3. Methods and Properties of Classes

 Methods and Properties of a class are those variables and procedures that cannot be accessed

other than within the context of an object instance of the class.

 The methods and properties of a class are accessed using the dot (.) extension to the class name.

For instance, if the class Object1 has a property called Name and obj1 is an object instance of

that class, then the property can be accessed using the syntax obj1.Name.

 Properties and Methods can be either Public or Private, depending on whether they must be visible

to objects outside this class.

18 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

 Properties can also be defined as procedures to provide more access and validation control. Such

procedures are prefixed by the keyword ‘Property’.

 Properties have three procedure definitions: Get, Let, and Set.

 The Get procedure returns the value of the property and is called when the code is reading the value

of the property such as in Debug.Print obj1.Name

 The Let procedure is called by VB when the property value is being assigned a value in the code.

Eg. Obj1.Name = “Object 1”

 A Get procedure without the implementation of the Let procedure creates a Read-only property.

 A Set procedure is just like the Let procedure, except that it is used associate an object variable to

an object. In this case the Set keyword must be used. Eg. set obj1 = New Object1

 Sample Code:

Public Property Let Name(vdata As String)

 strname = vdata

End Property

Public Property Get Name() As String

 Name = strname

End Property

Public Property Set Myobject(vdata as object)

 Set mvarMyObject = vdata

End Property

 Methods are prefixed by either the keyword ‘Function’ or ‘Sub’. Subroutines do not have a return

value.

 Events of a control are suffixed into the name of the control with an underbar (_). Eg.

Command1_Click() is the Event method for the Click event of the Command1 command button.

 Every class has a Class_Initialize() and a Class_Terminate() event that is executed at the

initialization and termination stages of the class, respectively.

8. CREATING CLASSES

8.1. Create a Class Module

 Class modules contain code that define the properties and methods of the class.

 Classes can be created using the Class Builder Utility under the Add-in Manager.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 19

8.2. Create Properties and Methods

 Properties and Methods can be added using the Class Builder Utility or they can be manually edited

into the class module.

9. LAB

Optional Lab 1: Write a simple VB code and debug it.

Optional Lab 2: Write a simple VB code using a Form.

10. REVIEW

20 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

CHAPTER 2: CREATING AND RUNNING ACTIVE-X CLIENT

COMPONENTS

1. OBJECTIVES

In this chapter you will review the steps needed to develop:

 Active-X clients that use Automation objects

2. INTRODUCTION

 A client application is code that accesses the properties and methods of other Automation objects.

 The Object Variable must be declared using the ProgID of the object. The ProgID is made up of the

ProjectName and the ClassName concatenated with the dot (.) symbol. Eg. “Excel.Application”

 Standard applications, such as MS Word and MS Excel, can provide Automation objects that can be

accessed by client applications.

 Client applications get information about Automation objects through the type libraries associated

with the Automation object. Type libraries provide information about the Interfaces supported by the

object, descriptions of the properties, methods, and events provided by the object, the return types

and parameter types of the methods and events, etc. This information for Active-X components can

be viewed through the Object Browser.

 The structure of the inter-relationships of objects within the type library is depicted by the Object

Models.

3. CREATING A CLIENT COMPONENT

 Create a Standard executable VB Project

 Set a reference to the component library

 Declare and create an object variable representing the component

 Use the object’s methods and properties

4. DECLARING AND CREATING AN OBJECT VARIABLE OF SERVER COMPONENT

 Use CreateObject(ProgID) method to instantiate an object.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 21

Dim obj as Excel.Application

Set obj = CreateObject(“Excel.Applicaton”)

 Use the New keyword.

Dim obj as Excel.Application

Set obj = New Excel.Applicaton

5. LAB

Optional Lab 3: Using object browser to view Automation objects.

Optional Lab 4: Write VB client application to access Microsoft Excel’s Automation objects.

6. REVIEW

22 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

CHAPTER 3: CREATING AND RUNNING ACTIVE-X

SERVER COMPONENTS

1. OBJECTIVES

In this chapter you will review the steps needed to develop:

 Active-X server components in the Visual Basic (6.0) development environment.

2. ACTIVE-X SERVER COMPONENTS

 Active-X server components are libraries of objects that can be used by client components.

 These have a Project Type of Active-X DLL.

3. CREATING AN ACTIVE-X SERVER COMPONENT

 Create an Active-X dll project

 Create a Class Module

 Create functions and properties (defined in the abstract class) in the new class.

 Compile the component or run the VB project to register the class for debugging.

4. CREATE A CLIENT APPLICATION THAT USES THE ACTIVE-X SERVER

 Create a standard executable which references the Active-X Server

 Dimension and create an instance of the class.

 Access functions and properties of the class.

5. LAB

Optional Lab 5: Create an active-x server and a client application.

6. REVIEW

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 23

CHAPTER 4: CREATING ACTIVE-X SERVER

COMPONENTS SUPPORTS INTERFACES

1. OBJECTIVES

In this chapter you will review the steps needed to develop:

 Active-X server components with an interface in the Visual Basic (6.0) development environment.

2. ACTIVE-X SERVER COMPONENTS

 Active-X server components are libraries of objects that can be used by client components.

 These have a Project Type of Active-X DLL.

3. INTERFACES

 Interfaces are abstract classes. Abstract classes act as templates because they provide function

and property definitions without any implementations.

 An interface specifies the functionalities guaranteed by an object.

 Interfaces allow objects to grow in functionality without breaking the earlier functionalities, as long as

they continue to implement the original interfaces.

4. CREATING AN ACTIVE-X SERVER COMPONENT WITH INTERFACE

4.1. Create an abstract class for the interface

 Create an Active-X dll project.

 Create a class module with the name of the abstract class and interface.

 Create the functionalities of the interface by adding methods and properties to the abstract class. No

implementation code must be included.

 Compile the code or run the VB project to register the class for debugging .

4.2. Create an implementation of the abstract class or interface

 Create an Active-X dll project that references the abstract class created above.

24 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

 Use the ‘Implements’ keyword followed by the name of the abstract class inside the implementation

class module. This class then implements the interface described by the abstract class.

 Implement the functions and properties (defined in the abstract class) in the new class.

 Compile the component or run the VB project to register the class for debugging.

4.3. Create a client application that uses the implementation

 Create a standard executable which references the abstract class and the implementation class.

 Dimension variables of the abstract class as well as the implementation class.

 Set the abstract class variables to point to the existing implementation class objects.

 The functionalities available at each object depends on its class definition, even though they point to

the same object.

5. LAB

Optional Lab 6: Create an interface, an implementation, and a client application.

6. REVIEW

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 25

CHAPTER 5: DATA MODEL - FUNDAMENTALS

1. OBJECTIVE

In this chapter, you will learn

 the Data Model terminology

 how to interpret the UML diagrams

2. DATA MODEL IN OBJECT-ORIENTED TERMINOLOGY

 Every software works with data using methods or routines. Data and methods can be grouped to

form self-contained objects that interact with other objects.

 A class is a template for an object. Multiple objects of a given class can be used in a project. A

project may also include a number of different classes. These classes can be related to one another.

The relationship among the classes represents the Data Model.

 The Static Data Model describes the nature and inter-relationships of the various classes in a

project. The Data Model can be represented as a Class Diagram using Unified Modeling Language

(UML). UML is an emerging language for creating models of object-oriented computer software.

3. DATA MODEL REPRESENTED USING UML

3.1. Object Classes

 The Data Model deals with classes of objects.

 An object class is a template for an object while an instance refers to a particular object created

during the use of the software.

 An object is made up of attributes (member variables) and operations (member functions and

subroutines).

 An object class is represented by a box called the class icon. It is a rectangle divided into three

compartments.

26 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

 The topmost compartment contains the name of the class. Typically, the second compartment lists

the attributes of the class, and the third compartment lists the operations. Normally, only relevant

attributes and operations are listed in these compartments for space considerations.

3.2. Relationships

 Object classes in the Data Model are normally related to other object classes.

 These relationships include simple associations, aggregate relationships, and inheritance and are

always denoted by a relationship line.

 Most of the relationships are maintained by member variables. One member variable in one of the

objects will represent the unique identifier of the related object.

3.2.1. Association (Open Arrow)

 A simple association is a reference to an object inside another object.

 The direction of the open arrow indicates the direction of the navigation. The object class

that maintains the information about the relationship is at the base of the arrow.

 Instances of both objects must exist before the relationship can be created.

3.2.2. Inheritance (Closed Triangular Arrow)

 In the inheritance relationship, the arrow is at the parent object, which is the superclass.

 The child object, the sub-class, derives from the parent class and inherits all of the attributes

and operations of the parent class.

 The sub-class is a more specific kind of the superclass. The derived classes retain pointers

to their parent classes.

3.2.3. Aggregation and Composition (Diamonds)

 Diamonds indicate Parent-Child relationships. The entity with the diamond is the Parent.

 The child exists only if the parent exists. For example, a Nozzle must have a parent

Equipment. If the parent Equipment is deleted, the child Nozzle cannot exist.

3.2.4. Text

 The text on the relationship line shows the nature of the relationship.

3.2.5. Numbers

 Numbers at the ends of the relationship line indicate “multiplicity” or the number of instances

of the respective object class that can exist in the relationship. For instance, the numbers

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 27

between ModelItem and Representation indicate that one ModelItem may be related to

(associated with) multiple (0…*) Representations. Some ModelItems do not have any

representations (0), while some can have multiple representations (*).

4. REVIEW

28 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

CHAPTER 6: LOGICAL MODEL AUTOMATION (LLAMA)

1. OBJECTIVES

In this chapter, you will learn

 interpret the Logical Model Automation classes and properties from the Data Model

2. INTRODUCTION

The Logical Model Automation (Llama) is primarily an object model based on the SmartPlant P&ID DataModel. In

order to facilitate proper use of Automation, Llama also incorporates some non-DataModel items.

3. ITEMS FROM THE DATAMODEL

3.1. Object Classes

 Each object class in the DataModel has two Visual Basic (VB) classes. The first represents the

object class while the second represents a collection of the object class. The names of these

classes are prefixed by an “LM”. The LM stands for the Logical Model. For example, the PipeRun

object class in the DataModel has two classes, namely LMPipeRun and LMPipeRuns, in VB.

 Llama does not provide classes for the *Join objects. These objects contain connection informaton

for a many-to-many relationship between two object classes. For instance, the PlantItemGroupJoin

object class holds connection information between the PlantItem and PlantItemGroup object classes,

which are related through a many-to-many relationship. Llama provides this information in the same

way that it supports relationships. This will be discussed in the section on Relationships.

 Certain relationships shown in the Data Model are not implemented in SPPID. For instance, the

relationship between Nozzle and PipeRun and the many-to-many relationships indicated by the

PipeRunJoin and SignalRunJoin tables are currently not implemented.

3.2. Attributes

 Every object has one or more attributes.

 Although many objects may use similar attributes (e.g. SP_ID), the attributes of an object are unique.

 Attributes from the DataModel are implemented in three different ways in Llama, depending on the

datatypes of the attribute. These are the simple datatypes, the enumerated datatypes, and the

unitted datatypes.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 29

3.2.1. Simple Data Types

 The simple datatype attributes, such as string, date, long, etc, are implemented as standard

Properties of the VB class.

 The Let and Get functions are typically defined for the Property, enabling the VB user to both

assign the value and to read the value.

3.2.2.Enumerated Data Types

 The enumerated attributes are codelisted attributes. Each codelist has a number (an integer

part) and a name (a string part) and these are listed in the ‘Enumerations’ table in the

DataDictionary. The members of each codelist are listed in the ‘codelists’ table in the

DataDictionary. They have a set of predefined values with corresponding indices for each

valid value. The values and the indices together form the codelist associated with the

attribute.

 In Llama, the enumerated attributes are named after the codelists that they represent.

 Each enumerated attribute has two Properties associated with it in Llama. One has the

name of the attribute, and it can be used to either get or set the name (string part) of the

value. The other has the name of the attribute suffixed with the word “Index”, and can be

used to get or set the integer part (index) of the value. The index zero (0) indicates a null

value.

3.2.3.Unitted Attributes

 The unitted attributes are the formatted attributes.

 They are composed of a numeric value and a text string depicting the unit of measure. The

numeric value is an arbitrary number selected by the user, but the unit of measure must be

recognized by SmartPlant P&ID as one of the defined formats.

 In Llama, the unitted attribute has two Properties associated with it. One has the name of

the attribute, and it is the concatenation of the floating point value and the unit of measure as

a single string. It can be used to set and get the value of the attribute in string form. The

other property has the name of the attribute suffixed with the word “SI” and it yields the

numeric value converted into the SI units for that quantity. This latter function is read-only

and has only the Get part of the property.

3.3. ItemAttribution

 The relationship between objects allow objects to own attributes that are unique to other objects

through various relationships. These derived attributes are part of the ‘Item Attributions’ of that item.

30 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

 The inheritance relationship naturally includes the attributes of the superclass into the Item

Attributions of the subclass. For instance, the ItemAttributions of the Equipment class include

attributes of PlantItem because of the inheritance relationship between Equipment and PlantItem.

 An association relationship between two items can permit one or more attributes of one class to be

Item Attributes of the other. These Item Attributes have to be explicitly added in order for the

attribute to be available from the object. The relationship between Case and ModelItem allows

Equipment to have some Case attributes in its ItemAttributions list because of the ItemAttributions

created between the two classes. However, other object classes that inherit from ModelItem do not

have to own the same Case attributes and therefore do not have these attributes as part of their

itemAttributions list.

 Each item attribution has a Name, a DisplayName, and an ID among other properties. If the item

attribution is displayable through the property grid, then the DisplayName will be displayed in the

property grid for the particular item.

 The ItemAttribution name is generally based on the path used to navigate to the property from a

given item. However, this format is not a requirement. The only requirement is that the name must

be unique for a given object class.

 Item Attributions not directly owned by the item are maintained in memory for performance reasons.

Starting V3.0, first time user tries to access these Item Attributions will make these Item Attributions

available for the object, no special trigger is needed. In addition, if user get the object using

PIDDatasource, then all Item Attributions will be in the collection by default.

3.4. Relationships

 Llama implements the relationships defined in the DataModel through properties. These properties

appear in the ‘LM’ class of the object class. The type of property that appears depends on the

multiplicity of the specific end of the relationship.

3.4.1.One-to-Many Relationship

 In a one-to-many relationship, the LM class on the ‘one’ end of the relationship will have a

property that returns a collection of the item that appears on the ‘many’ end of the

relationship. As an example, in the one-to-many relationship between Equipment and

Nozzles, LMEquipment has a property called Nozzles, which returns all of the nozzles

associated with the given instance of the LMEquipment.

 In the item on the many end of the relationship, there is a property that returns the unique

item that it is related to. In the above example, the LMNozzle has a property that returns the

EquipmentObject that it is related to.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 31

3.4.2.Inheritance Relationship

 Inheritance relationships are visible through the ‘additional’ properties inherited by the sub-

class LM object:

 The sub-class LM object contains every property of the superclass. For example,

LMEquipment has a property called ItemTag, which it inherited from its superclass,

LMPlantItem. LMVessel, which is a sub-class of LMEquipment, also inherits the ItemTag

property from LMPlantItem.

 The subclass LM object inherits relationships of its superclass. For example, LMPlantItem

has a property called Cases, which returns a collection of Cases, because it inherits the one-

to-many relationship between its superclass ModelItem and Case in the DataModel.

3.4.3.Many-to-Many Relationships

 In a many-to-many relationship, the LM classes associated with both the object classes have

properties that return a collection of the other LM class. For example, LMPlantItem has a

property called PlantItemGroups, and LMPlantItemGroup has a property called PlantItems.

3.4.4.Group Relationships

 In a group or parent-child aggregation relationship, a child object has only one parent while a

parent can have many children. Consequently, most parent-child aggregations are typically

one-to-many relationships.

 Llama provides a property that returns a collection of the ‘many’ object in the group

relationship. Although some parent-child relationships have a one-to-one relationship or

even a one-to-none relationship, a collection is still provided. For example, the PipingComp

and InlineComp have a parent-child aggregation relationship with multiplicity of 0..1. This

implies that an InlineComp can have at most one PipingComp parent and the PipingComp

can have at most one InlineComp child. Although the latter condition suggests a single

InlineComp for a PipingComp, Llama still supports a property that returns a collection of

LMInlineComps for a given PipeRun. This collection may contain only one object, consistent

with the multiplicity of the relationship.

4. ITEMS OUTSIDE OF THE DATA MODEL (LMA)

In addition to the object classes provided in the DataModel, Llama provides some additional classes to enable the use

of Automation.

32 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

4.1. LMADatasource

 The LMADatasource is the primary object in Llama because it provides the connection to the

database.

 The LMADatasource establishes connection to the database using the Plant Name in SPManager.

The ProjectNumber is the property that is set equal to the active SPManager Plant Name as default.

To switch to a new SmartPlant P&ID Plant, user must set a the exactly name of the Plant to the

ProjectNumber of the LMADatasource

 There are three sources to get LMADatasource. First is by setting a new LMADatasource, second is

get PIDDatasource from the active drawing, third is get from SPPID when running validation program

or external utility.

 A New LMADatasource must be created in a standalone project, unless the datasource can be

obtained from another process. In Calculation/Validation, a New Datasource does not have to be

created because the Active-X dll receives an initialized LMADatasource from the SPPID.

 New LMADatasource is a static query to the database, which is any changed made after the object is

initialized, it won’t know. In addition, if new LMADatasource modifies the items in active drawing,

then user cannot modify the same item, otherwise, the drawing will crash due to inconsistency

between database and drawing.

 QueryCache is a property for LMADatasource, but it only affects PIDDatasource, by default, it is

True, if sent to False, then PIDDatasource won’t query the changes included in Cache.

 Locale is another important property for LMADatasource, if set to “-1”, it will make huge difference on

performance at a satellite side, where the query will be conducted as Rep Schema locally instead of

querying host site.

 The three properties IPile, Pile, and PIDMgr have non-Llama return types and can be used to get the

connections to the Data Coordinator and PIDObjectManager or to set the connections to existing

connections. The typical Llama user will not have to use any of these properties. These are for

advanced uses.

4.2. Labs

Lab 1: Initialize LMADataSource and access its properties.

Lab 2: Change Site and Plant

Lab 3: Access ItemTypes.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 33

4.3. LMAItem

 The LMAItem is a generic item in Llama. It has an interface that is supported by every object class in

Llama. Therefore, an LMVessel can be converted to LMAItem.

 Every LMAItem represents the object class it was converted from. Typically, one would use the

ItemType to determine the type of item to ‘get’ from the datasource. For instance, LMVessel as an

LMAItem will yield an ItemType of ‘Vessel’ while the same vessel item when retrieved as an

LMEquipment and then converted into LMAItem will yield an ItemType of ‘Equipment’. However, this

is not TRUE anymore since V4. In V4, all model item object will be obtained in its concrete level. For

example, even retrieved as n LMEquipment, its ItemType is “Vessel”. In addition, the object will have

all ItemAttributions collection as its concrete object.

4.4. LMAAttribute

 An LMAAttribute is a generic attribute in Llama and uses the ItemAttribution. It has a Name and a

Value. These are applicable for all types of attributes.

 Additional properties such as Index and SIValue are applicable for enumerated (codelisted) and

unitted (formatted) attributes, respectively.

 The ISPAttribute is a property is reserved for advanced uses and is not supported in Llama.

 Typically, an LMAAttribute can be identified from the LMAAttributes collection by using the Name as

listed in the Item Attributions table.

 LMAAttributes is collection of LMAAttribute. LMAAttributes has a hidden property named

“BuildAttributesOnDemand”, by default, it is set to False, but it’s recommended to set it to TRUE if

only few attributes are accessed by the program, which is normally the case. However, by doing so,

the attribute name becomes case sensitive.

 Note: Since V2007, the BuildAttributesOnDemand is by default set to TURE, hence the

attribute name is always case sensitive.

4.5. Labs

Lab 4: Identify an Item and read its properties.

Lab 5: Modify the properties of an Item.

Lab 6: Init Objects Read Only.

Lab 7: Rollback.

Lab 8: Propagation.

34 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

Lab 9: Access LMAAttributes Collection.

Lab 10: Access ItemAttributions in Details.

Optional Lab 7: Modify Property Based on Construction Status

4.6. LMACriterion

The LMACriterion is an object class that is typically used with the LMAFilter class.

 A criterion relates an attribute with a value. The criterion can be fully defined by setting values for at

least three properties, namely SourceAttributeName, ValueAttribute, and Operator.

 The SourceAttributeName is the name of the attribute from the ItemAttributions table.

 The ValueAttribute is the value of the attribute, it also can be a string containing a symbol such as

“%”,”_” etc.

 The Operator indicates the relationship between the attribute and its value. The operator is a string

containing a symbol such as “=”, “<”, “>=”, “like”, “is” etc.

 The SourceAttributeID is the ID of the ItemAttribution.

 The SIValue can be specified in the case of formatted attributes.

 The ValueDisplayString is value of formatted attributes as displayed in the PropertyGrid.

 The Conjunctive must be set to True if this LMACriterion must be AND-ed with other LMACriterions.

4.7. LMAFilter

 LMAFilter.Criteria.Add Criterion adds the Criterion into the Criteria collection in the Filter.

 LMAFilter.Criteria.AddNew without an argument will create an new LMACriterion to the filter.

 The LMAFilter.Criteria collection has default indices starting with 1.

 If a specific vntindexkey is to be assigned, then it can be given as LMAFilter.Criteria.AddNew(“3”) or

LMAFilter.Criteria.AddNew(“Special”).

 A counter key is still available for an LMACriterion based on the number of Criteria that existed prior

to its creation.

 If a Criterion is deleted from the list, the counter key is renumbered but the list maintains the same

sequence.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 35

4.8. LMAEnumAttList

 An LMAEnumAttList in Llama is referred to a SelectList data.

 Property EnumeratedAttributes is a collection of SelectList value of this SelectList Data.

 User can get a collection of LMAEnumAttList from LMADataSource.CodeLists property.

4.9. LMAEnumeratedAttribute

 An LMAEnumberatedAttribute in Llama is referred to a SelectList Value in a Select data.

 Properties of LMAEnumberatedAttribute, such as Name and Index will return the Name and Index of

a select value. This will be very useful when Llama user creates a LMAFilter in program, since Llama

only takes Index value in Criterion.

5. GENERAL ISSUES

5.1. Properties and Methods of Collections

 Property Count: returns the number of items in the collection. For an empty collection, the Count is

zero.

 Property Item(ID as long): returns an item of the type that this collection holds. The argument is the

IndexKey of the item. The IndexKey is generally the SP_ID of the item. If the IndexKey is wrong, the

returned item is a Nothing.

 Property Nth(index as long): selects the item in the sequence that it is stored in the collection.

 Property Datasource: returns the Datasource that was used to create the collection. This is

important when a number of datasources are in use, each pointing to different plants or databases.

 Property TypeName As String: Returns the item type name of the items in the collection.

 Sub Remove(ID as long): removes the item with the given ID, if it exists in the collection.

 Sub Collect([DataSource As LMADataSource], [Parent As LMAItem], [RelationshipName As String],

[Filter As LMAFilter]): collects items of the kind represented by the collection from the specified

DataSource. The filter can be used to identify specific properties for the collected items. The

RelationshipName is the name given on the relationship lines in the DataModel.

 Sub Clear(): Clears the collection.

36 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

 Sub AddCollection(Items As …): Add all items from the indicated collection into the current

collection.

 Function Add([Item As …]) As …: Adds an item to the collection. Note that the argument and the

return value are of the added Llama object.

 Function AsLMAItems() As LMAItems: Returns the LMAItems interface of the collection.

 The LMACriterions collection has a special Function Add(NewObject As LMACriterion) which returns

a Boolean.

6. LABS

Lab 11: Access an item using filters with single criterion.

Lab 12: Access items using filters with multiple criteria.

Lab 13: Access items using filters with criterion on Select List Data.

Lab 14: Using Compound Filter

Lab 15: Access all filters defined in the plant.

Lab 16: Access SelectList Data.

Lab 17: Create Filter with Select List Data in Criteria.

Optional Lab 8: Serach Items and Modify Property

7. REVIEW

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 37

CHAPTER 7: SPPID DATA MODEL

1. OBJECTIVES

In this chapter, you will learn

 the general structure of the SmartPlant P&ID Data Model and its implementation in the Llama object

model

 highlights the relationships between the classes that need additional attention

2. INTRODUCTION

The objects exposed through Llama span all the three schemas used in the database. Objects in each grouping may

come from different schemas. However, the object model relationships allow the user to access the related objects

and obtain the appropriate properties without being concerned about the schema they belong to. Therefore, the most

important task for the user of Automation is fully understand the various relationships between objects. This chapter

addresses some objects and relationships that requires special attention from the user.

3. MODEL DATA

The Model Data maintains the engineering data. It is centered around the ModelItem and the PlantItem, which is also

a ModelItem. Refer to the Data Model diagram for the relationships between the various objects. This section

describes only the specially noteworthy and the not-so-obvious characteristics of the objects.

3.1. ModelItem

The ModelItem can own one or more instances of Alias, History, Event, Note, Source, and Status. In

addition, it can own one or more Representations from the Drawing Data Model. Currently the

software creates History records of HistoryType ‘Creation’ and ‘Last Modification’. The user should

not modify any of the History records maintained by the system nor create new ones of these types.

However, the user can create new History records of a different type after creating new types in the

datadictionary, if necessary. The Automation user can also create new instances of Alias, Event,

Note, Source, and Status.

In addition, a ModelItem can own one or more Cases. These Cases are maintained by the software

using the information provided in the DataDictionary and the ItemAttributions. The Automation user

should not attempt to add new Cases, CaseProcesses, or CaseControls through code.

The ModelItem is the superclass from which all other Model Data classes are derived. The

immediate subclasses of the ModelItem are the ItemNote, PipingPoint, PlantItem, SignalPoint, and

OPC. Of these, the most significant is the PlantItem.

38 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

3.2. Labs

Lab 18: Read History Property of ModelItem.

Lab 19: Read Status Property of ModelItem.

Lab 20: Read Case Property of ModelItem.

Lab 21: Access ItemNote.

Lab 22: Access OPC.

Lab 23: Filter for Histories

Optional Lab 9: Modify Case Process Data

 Model Data: Model Item

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 39

3.3. PlantItem

Most items that are placed on drawings can be traced back to PlantItem. Subclasses of the

PlantItem are Equipment, Nozzle, PipingComp, Instrument, Pipeline, Piperun, SignalLine, SignalRun,

and PlantItemGroup.

3.3.1.PartOfPlantItemID and PartOfPlantItemObject

Returns the PlantItem that this current PlantItem is a Part Of. Examples are implied items, TEMA

ends, and trays. An implied item is related to its parent item through this relationship. It also has

a PartOf type = ‘Implied’. A TEMA end is a part of the TEMA Shell that it is placed on and has a

PartOf type = ‘Composite’. Although a tray is a legitimate part of the vessel it is placed on, it

does not have a PartOf type value. The value is NULL for a tray.

3.3.2.PlantItemGroup and PlantItem

PlantItemGroup is a subclass of PlanItem, concrete PlantItemGroup includes: Package,

SafetyClass, System, InstrLoop, PlantItemGroupOther, and AreaBreak. PlantItemGroup has

many to many relationship with PlantItem. For example, a Package can have two vessels and

many piperuns, while one vessel can belong to multiple Packages.

3.3.3.Labs

Lab 24: Change properties at different object levels.

Lab 25: Read Case Property of Vessel.

Lab 26: Read Flow Direction of PipeRun

Lab 27: Access Piping Point.

Lab 28: Access Signal Point.

Lab 29: Implied Items.

Lab 30: Part of PlantItem relationships.

Lab 31: Access Instrument Loop.

Lab 32: LoadInstruments.

Optional Lab 10: Find Implied Items and Modify Their Property

40 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

Model Data: PlantItem

Model Data: PlantItemGroup

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 41

Model Data: Equipment

3.4. Logical Connectivity

3.4.1. Nozzle - Equipment

A Nozzle is always owned by an Equipment object.

3.4.2.PipingComp – InlineComp

Every PipingComp has an associated InlineComp. The PipingComp owns its associated

InlineComp. However, only the InlineComp has the information about the PipeRun that the

PipingComp resides on.

3.4.3.Instrument – InlineComp

An Instrument can own an InlineComp if it is an Inline instrument. In this case, the Instrument

owns its associated InlineComp. The InlineComp maintains the relationship to the PipeRun that

the Instrument is on.

3.4.4. Instrument – PipeRun

When a PipeRun with PiperunClass equals to Instrument is connected with an off-line

instrument, SP_PipeRunID in T_Instrument table will be populated with SP_ID of the PipeRun.

3.4.5. Instrument – SignalRun

When a SignalRun is connected with an off-line instrument, SP_SignalRunID in T_Instrument

table will be populated with SP_ID of the SignalRun.

3.4.6.Labs

Lab 33: Identify Nozzle and Equipment.

42 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

Lab 34: PipingComp and InlineComp.

Lab 35: Instrument and InlineComp

Lab 36: Offline Instrument and SignalRun.

Lab 37: Access Instrument Functions.

Optional Lab 11: Count Nozzles on a Vessel

Model Data: Connectivity

4. DRAWING DATA

The Drawing Data Model maintains the graphical representation data. It is centered around the Drawing and the

Representation objects.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 43

Drawing Data: Package Overview

4.1. Drawing

Drawing object can own one or more History, Status and Note. Currently the software creates History

records of HistoryType ‘Creation’ and ‘Last Modification’. The user should not modify any of the

History records maintained by the system nor create new ones of these types.

44 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

4.2. Representation

A Representation belongs to a Drawing or Stockpile. Most representations also belong to some

ModelItem. There are four types of Representations, namely LabelPersist, Symbol, Connector, and

BoundedShape.

4.3. LabelPersist

A LabelPersist representation is created every time a label is placed on a drawing. This is the only

representation that does not belong to a ModelItem. The LabelPersist representation can have a

RepresentationType = ‘Label’.

A LabelPersist not only is a Representation, it is also ‘Related To’ another Representation. This

latter representation belongs to the ModelItem on which the label is placed.

For labels on Symbol, the label is labeling the Symbol. However, for labels on PipeRun, actually the

label is labeling the Connector.

4.3.1. Labs

Lab 38: Identify connectors of a Piperun.

Lab 39: Find File Name of a Symbol.

Lab 40: Find X, Y Coordinates of Symbol.

Lab 41: Find X, Y Coordinates of Piperun.

Lab 42: Find Labels of a Symbol.

Lab 43: Find Parent Representation of a Label.

Lab 44: Find Parent Drawing of a Symbol.

Lab 45: Find Active Drawing and PlantItems in it.

Lab 46: Filter for Items In Plant Stockpile.

Optional Lab 12: Search Items Active Drawing Stockpile

4.4. Symbol

A Symbol representation is created every time an item is placed on a drawing. Every PlantItem,

except Pipeline and SignalLine, has an associated Symbol representation. In addition, ModelItems

such as OPCs and ItemNotes (annotations) also have symbols. When a PipeRun or a SignalRun is

placed on a drawing, multiple representations are created. A Symbol representation is one of the

representations placed at the creation of a run. A Symbol representation can have the following

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 45

RepresentationTypes, namely Gap, OPC, Symbol, and Branch. ‘Gap’ stands for a gapping symbol

placed at the junction of crossing runs. An ‘OPC’ type representation is placed for OPC ModelItems.

Typically, most other items have a Symbol representation of RepresentationType, ‘Symbol’. A

branch point on a PipeRun or a SignalRun produces a Symbol of RepresentationType, ‘Branch’. The

‘Branch’ symbol behaves just like a regular symbol.

4.4.1.Connect1Connectors

A collection of connectors that are connected to this current Symbol representation by their End1

ends.

4.4.2.Connect2Connectors

A collection of connectors that are connected to this current Symbol representation by their End2

ends.

4.4.3. ConnectorVertices

A collection of Connector Vertex that holds graphic information for the Connector, such as X, Y

Coordinates of the Connector. Pay special attention, X, Y Coordinates are not necessary always

stored in the Connector Vertex, sometimes, depending on how the Connector is drawn, the

Symbol connected with the Connector holds such information.

4.5. Connector

A Connector representation is created along with a Symbol representation when either a PipeRun or

a SignalRun is placed, leading to a total of two representations. If an existing connector is split by

placing an inline component on the run, then the original connector is deleted and replaced by two

connectors, one on each side of the inline component. If the Piperun or SignalRun is deleted into the

Stockpile, then all the Connector representations are deleted.

Each connector has two end points, namely the End1 and End2. The ends are named 1 and 2 in the

direction that the connector was drawn. Each connector can be attached to a symbol on each of the

two ends.

4.5.1.ConnectItem1SymbolID and ConnectItem1SymbolObject

This is the symbol representation to which the End1 of this current connector is attached.

4.5.2.ConnectItem2SymbolID and ConnectItem2SymbolObject

This is the symbol representation to which the End2 of this current connector is attached.

46 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

4.6. BoundedShape

A BoundedShape representation is created when placing an AreaBreak or Revision Cloud.

4.7. Labs

Lab 47: Identify items connected to a PipeRun.

Lab 48: Identify the PipeRun associated with the PipingComp.

Lab 49: Navigate down a piperun to a vessel.

Lab 50: Navigate through a branch point on a piperun.

Lab 51: Navigate through OPC

Optional Lab 13: Navigate from Off-line Instrument to Process PipeRun.

Optional Lab 14: Find OPC and From/To.

5. ADDITIONAL DATA MODEL

5.1. Relationship

A Relationship is created automatically between representations when

(1) Two graphics are connected. Example: PipeRun connected to Valve, Nozzle on a Vessel. (2)

When a symbol is placed that has piping points or signal points.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 47

 Relationship Model

5.2. Labs

Lab 52: Access Relationship from Representation

Lab 53: Access Inconsistency

Lab 54: Access RuleReference

5.3. PlantGroup

PlantGroup is a superclass with eight subclasses, namely Site, Plant, Unit, BusinessSector, Level,

PlantSystem, SubSystem and Area. These are designated by PlantGroupTypes enumerated list in

the DataDictionary. Unlike all other objects in the SPPID data model, new subclasses can be added

to PlantGroups. These classes are persisted as tables with a ‘SPM’ prefix after the prefix ‘T_’. For

example, a user-defined PlantGroup SubArea corresponding table is T_SPMSubArea. These objects

can be obtained as generic LMAItems. For instance, if SubArea is a user-defined PlantGroup that

was included into a hierarchy and used in a plant structure, then the following code can be used to

access the SubArea that has an ID=”SP_ID”:

Dim objItem As LMAItem

Set objItem = objDatasource.GetItem("SPMSubArea", "SP_ID")

The attributes of the SubArea will need to be obtained through the Attributes collection because they

are user-defined.

5.3.1.ParentID and ParentType

ParentID returns the ID of the Parent PlantGroup of the current PlantGroup. It returns a negative

1 (-1) if it is the top-most item in the hierarchy. The ParentType is a number describing the type

of the Parent PlantGroup.

5.3.2.PlantGroupType

It is an enumerated list describing the type of the PlantGroup.

5.3.3.PlantItems

A collection of PlantItems that have been associated with this PlantGroup. One example is when

an Equipment Vessel is associated with a Unit. The Equipment would then appear in the Unit’s

PlantItems collection.

48 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

5.3.4.Drawings

A collection of Drawings that are directly under the current PlantGroup.

5.3.5.Labs

Lab 55: Access PlantGroup from PlantItem.

Lab 56: Access PlantGroup from Drawing.

Lab 57: Access Customized PlantGroup.

 Plant Hierarchy

5.4. Workshare

Workshare may be set up to share SPPID data among multiple locations or to have a Task/Master

Plant. Workshare entities are created in PLANT schema. LLAMA is aware of the workshare. For

example, if user tries to modify a property of an item that read-only because of workshare, the

modification will not be persisted to database. However, there is no public interface exposed in

LLAMA that user can check such as ownership of a drawing, or user’s access right.

5.4.1.WSSite

Every plant, by default, is a workshare site. User can create multiple satellite workshare sites in

the plant.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 49

5.4.2.DrawingSite

This is a join table between T_WSSite table and T_Drawing table. Through this table, drawing

knows who is it owner workshare site, and workshare site knows how many drawings belongs to

it.

5.4.3.ActiveWSSite

A plant may have multiple workshare sites, but it can have only one active workshare site.

5.4.4.PlantItemGroup

A table contains plant item group information that related to a workshare site.

5.4.5.OPC

A table contains OPC information that related to a workshare site.

5.4.6.PlantGroup

T_PlantGroup has a point that points back to the workshare site.

5.4.7.Labs

Lab 58: Access Workshare Site

Lab 59: Access DrawingSite

Lab 60: Workshare Awareness in LLAMA

Optional Lab 15: How to Check if a Drawing Belong to Active Site

50 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

Workshare Model

5.5. As-Build/Project

5.5.1.Project

Every plant, by default, is The Plant. Then, User can create multiple projects in the plant.

5.5.2.ActiveProject

The current in-use project is the active project. User can access active project through

LMADatasource.GetActiveProject function. It can be The Plant or projects.

5.5.3.Project Status

Project status is a select list data with following lists: Active, Completed, Merged, Finished,

Cancelled, Terminated, None, Deleted. The Plant status is None. Projects can have different

statuses.

5.5.4.Claim Status

In As-Build/Project environment, an item can have different claim status: Not Claimed, Claimed

by active project, and Claimed by Others.

5.5.5.Labs

Lab 61: Access Active Project

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 51

Lab 62: Access Plant from Project

Lab 63: Access Claim Status of Items

 Project Model

5.6. T_OptionSetting Labs

Lab 64: Access OptionSettings

5.7. Special Issues

5.7.1.Model Item always returns in its concrete level

Since V4, all model item object will be obtained in its concrete level. For example, even retrieved

as n LMEquipment, its ItemType is “Vessel”. In addition, the object will have all ItemAttributions

collection as its concrete object.

52 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

CHAPTER 8: PLACEMENT AUTOMATION

1. OBJECTIVES

In this chapter, you will learn

 an overview of the Placement Automation library

2. PLAICE LIBRARY

2.1. Create an Item in the Stockpile

Function PIDCreateItem(DefinitionFile As String, [DrawingID=”0”]) As LMAItem

DefinitionFile: the path and name of symbol file

DrawingID: SP_ID of drawing, the item will be created in its stockpile. If user leaves it blank, by

default, value is 0, which means plant stockpile. If you user specify a valid drawing SP_ID, the item

will be created in that drawing’s stockpile.

2.2. Place an Symbol on the Drawing

Function PIDPlaceSymbol(DefinitionFile As String, X As Double, Y As Double,
[Mirror], [Rotation], [ExistingItem As LMAItem], [TargetItem]) As LMSymbol

DefinitionFile: the path and name of symbol file

X: x-coordinate of where the symbol locates on Drawing, unit in METER

Y: y-coordinate of where the symbol locates on Drawing, unit in METER

[Mirror]: True or False

[Rotation]: 1.57=90 Degree

[ExistingItem]: Item as LMAItem in stockpile/drawing to be placed on Drawing

[TargetItem]: Related item as LMRepresentation of the symbol to be placed, for example, when place

a nozzle symbol, a Equipment item must be specified as TargetItem. (When TargetItem is specified,

given X, Y coordinates may be ignored, software will locate a new X, Y coordinates for the symbol to

be located on the edge of TargetItem, if PIDSnapToTarget is set to TRUE)

2.3. Place Labels

Function PIDPlaceLabel(DefinitionFile As String, Points() As Double, [Mirror],
[Rotation], [LabeledItem As LMRepresentation], [IsLeaderVisible As Boolean =
False]) As LMLabelPersist

DefinitionFile: the path and name of label file

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 53

Points(): a dynamic array, specifies the X, Y coordinates for Label to be placed on drawing

[Mirror]: True or False

[Rotation]: 1.57=90 Degree

[LabeledItem]: LMRepresentation of targetitem on which the label to be placed

[IsLeaderVisible]: specifies the Leader of the label to be placed is visible or not

2.3.1.Labs

Lab 65: Create a Vessel and place into StockPile.

Lab 66: Place a Vessel on a Drawing.

Lab 67: Place Nozzles and Trays on a Vessel.

Lab 68: Place Labels on a Vessel.

Lab 69: Place OPC

Lab 70: Place OPC from StockPile

2.4. Place Piperun

Function PIDPlaceRun(StockpileItem As LMAItem, Inputs As PlaceRunInputs) As
LMConnector

StockpileItem: Piperun placed in the stockpile as LMAItem

Inputs: Collection of input parameters as PlaceRunInputs

PlaceRunInputs.AddPoint(X As Double, Y As Double)

PlaceRunInputs.AddLocatedTarget(X As Double, Y As Double, [Diagonal As Boolean = False])

PlaceRunInputs.AddConnectorTarget(TargetItem As LMConnector, X As Double, Y As Double,

[Diagonal As Boolean = False])

PlaceRunInputs.AddSymbolTarget(TargetItem As LMSymbol, X As Double, Y As Double,

[Diagonal As Boolean = False])

2.5. Join Piperuns

Sub PIDJoinRuns(PipeRun1 As LMAItem, PipeRun2 As LMAItem)

PipeRun1: First Piperun as LMAItem to merge

PipeRun2: Second Piperun as LMAItem to merge

2.6. Place Bounded Shapes

Function PIDPlaceBoundedShape(DefinitionFile As String, Points() As Double,
[ExistingItem As LMBoundedShape]) As LMBoundedShape

DefinitionFile: the path and name of symbol file

54 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

Points: a dynamic array, specifies the X, Y coordinates for BoundedShape to be placed on drawing

ExistingItem: Item in stockpile to be placed on Drawing

2.7. Place Assemblies

Function PIDPlaceAssembly(AssemblyFile As String, X As Double, Y As Double) As
LMAItems

AssemblyFile: the path and name of symbol file

X: x-coordinate of where the symbol locates on Drawing, unit in METER

Y: y-coordinate of where the symbol locates on Drawing, unit in METER

2.8. Place Gaps

Function PIDPlaceGap(DefinitionFile As String, GapX As Double, GapY As Double,
ParamLeft As Double, ParamRight As Double, [objLMConnector As LMConnector],
[RotationAngle], [ExistingRun As LMAItem]) As LMSymbol

DefinitionFile: the path and name of symbol file

GapX: x-coordinate of where the Gap locates on Drawing, unit in METER

GapY: y-coordinate of where the Gap locates on Drawing, unit in METER

ParamLeft: length of Gap to the Left, unit in METER

ParamRight: length of Gap to the Right, unit in METER

[ObjLMConnector]: target PipeRun on which the Gap is placed

[RatationAngle]: 1.57=90 Degree

[ExistingRun]**: not working now

2.8.1.Labs

Lab 71: Using PIDPlaceRun to Place Piperun

Lab 72: Using PIDAutoJoin to Auto Join Two Piperuns

Lab 73: Place Gap.

Lab 74: Place BoundedShape

Lab 75: Place Assembly.

2.9. Remove a Symbol from the Drawing

Function PIDRemovePlacement(Representation As LMRepresentation) As Boolean

Representation: LMRepresentation of the symbol on Drawing to be removed into stockpile

2.10. Delete an Item from Model

Function PIDDeleteItem(Item As LMAItem) As Boolean

Item: LMAItem of the symbol (on Drawing) or item (in stockpile) to be delete from Model

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 55

2.11. Replace Symbol

Function PIDReplaceSymbol(NewSymbolFileName As String, ExistingSymbol As
LMSymbol) As LMSymbol

NewSymbolFileName: the path and name of symbol file used to replace the existing symbol

ExistingSymbol: LMSymbol of symbol on the Drawing to be replaced

2.12. Replace Label

Function PIDReplaceLabel(NewSymbolFileName As String, ExistingLabel As
LMLabelPersist) As LMLabelPersist

NewSymbolFileName: the path and name of label file used to replace the existing Label

ExistingLabel: LMLabelPersist of Label on the Drawing to be replaced

2.13. Replace OPC

Function PIDReplaceOPC(NewSymbolFileName As String, objExistingOPC As
LMSymbol) As LMSymbol **Not working now

NewSymbolFileName: the path and name of OPC used to replace the exising OPC

objExistingOPC: LMSymbol of OPC on the Drawing to be replaced

(However, pairOPC is not replaced)

2.14. Apply Parameters to Parametric Symbols

Sub PIDApplyParameters(Representation As LMRepresentation, Names() As String,
Values() As String)

Representation: LMRepresentation of parametric symbol on Drawing, whose parameters are to be

modified

Names(): a dynamic array, specifies the names of parameter, for example: TOP, RIGHT

Values(): a dynamic array, specifies the values of parameter

2.15. Locate Connect Point

Function PIDConnectPointLocation(Symbol As LMSymbol, ConnectPointNumber As
Long, X As Double, Y As Double) As Boolean

Symbol(): LMSymbol of the symbol to be located of connect point

ConnectPointNumber: Index number of the connect point on a symbol

X: x-coordinate of the connect point on drawing, unit in METER

Y: y-coordinate of the connect point on drawing, unit in METER

2.16. Datasource

Property PIDDataSource As LMADataSource

Property returns a LMADataSource object

56 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

2.17. PIDSnapToTarget

Property PIDSnapToTarget As Boolean

Property specifies item to be placed snap to targetitem or not, TRUE by default

2.18. SetCopyPropertiesFlag

Function PIDSetCopyPropertiesFlag(bDoCopy As Boolean) As Boolean

Property specifies the properties to be copied or not as defined in the Rule across the Items that are

connected.

2.18.1. Labs

Lab 76: Remove Vessel.

Lab 77: Delete Vessel.

Lab 78: Replace Symbol.

Lab 79: Replace Label.

Lab 80: Replace OPC.

Lab 81: Modify Parametric Symbol.

Lab 82: Using PIDConnectPointLocation to Locate X, Y Coordinates.

Lab 83: Create Instrument Loop.

Lab 84: Find and Replace Label.

2.19. Datasource

Property PIDDataSource As LMADataSource

Property returns a LMADataSource object

2.20. Place Connectors

Function PIDPlaceConnector(DefinitionFile As String, Points() As Double,
[OrthogonalStart As Boolean = True], [OrthogonalEnd As Boolean = True],
[ExistingItem As LMAItem], [OriginItem], [DestinationItem], [OriginIndex As Long = 1],
[DestinationIndex As Long = 1], [MinSegLength As Double = 0.001],
[RangeClearance As Double = 0.004]) As LMConnector

DefinitionFile: the path and name of symbol file

Points(): a dynamic array, specifies the X, Y coordinates for Connector to be placed on drawing

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 57

[OrthogonalStart]: specifies if Orthogonal to OriginItem

[OrthogonalEnd]: specifies if Orthogonal to DestinationItem

[ExistingItem]: LMAItem of existing piperun in the same drawing

[OriginalItem]: LMRepresentation of original item where connector starts

[DestinationItem]: LMRepresentation of Destination item where connector ends

[OriginIndex]**: not working now

[DestinationIndex]**: not working now

[MinSegLength]: specifies the minimum segment length to drawing the connector

[RangeClearance]: specifies the avoid range when place the connector

(when specifies the OriginalItem and DestinationItem, the first point’s and last point’s X, Y

coordinates will be ignored)

(When placing a connector to a symbol, how to control which connect point on symbol the connector

should be connected? Instead of using OriginIndex and DestinationIndex, specifying the X, Y

coordinate for connector point you wish to connect with in Points(), which will make the connector to

connect the connect point of the symbol)

3. MISC.

When placing a piping component on a piperun connector, the original connector is given an

ItemStatus of ‘Delete – Pending’ or ItemStatusIndex = 4 and two new connectors are created. When

placing the next item on the connector, you cannot use the reference to the original connector

because it is no longer valid. We have to find the two new connectors and then use their references.

This can be achieved by looking at the symbol placed and finding the item1connectors or

item2connectors.

When place a Gap on a piperun, the symbol does not break the original connector either. It creates

two more new connects and sits on the top of the piperun. When user select not to see the Gap, the

Gap along with two connectors it created will go to hidden layer and original connector is showing.

4. LABS

Optional Lab 16: Label Find and Replace Utility

58 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

CHAPTER 9: USING PIDAUTOMATION TO CREATE, OPEN

AND CLOSE DRAWINGS

1. OBJECTIVES

In this chapter, you will learn

 Using PIDAutomation to create, open and close drawings.

2. THREE IMPORTANT FUNCTIONS

2.1. PIDAutomation.Application.Drawings.Add

Function Add(PlantGroupName As String, TemplateFileName As String, DrawingNumber As String,

DrawingName As String, [DocumentTypeValue], [DocumentCategoryValue], [bVisible As Boolean =

True]) As Drawing

PlantGroupName: Name of PlantGroup that is just above drawing in Plant Structure Hierarchy

TemplateFileName: Full path and name of drawing template file

DrawingNumber: Drawing number of the drawing to be created

DrawingName: Drawing name of the drawing to be created

DocumentTypeValue: Optional argument, select list value for document type, default value is 631

stands for P&Ids

DocumentCategoryValue: Optional argument, select list value for document category, default value

is 6 stands for Piping Documents

BVisible: Optional argument, Boolean value as True or False for the visibility of drawing when

opening, default as True

2.2. PIDAutomation.Application.Drawings.OpenDrawing

Function OpenDrawing(DrawingName As String, [Visible = True]) As Drawing

DrawingName: Pure name of drawing

Visible: Optional argument, Boolean value as True or False for the visibility of drawing when

opening, default as True

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 59

2.3. PIDAutomation.Drawing.CloseDrawing

Sub CloseDrawing(SaveFile As Boolean)

SaveFile: Boolean value as True or False to save drawing when closing drawing.

3. LABS

Lab 85: Open and close an Existing Drawing

Lab 86: Create, Open and Close a New Drawing

Lab 87: Comprehensive Automation Lab

Optional Lab 17: Automatically Create New Drawings

Optional Lab 18: NC/NO Valves Replacement Utility

60 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

CHAPTER 10: CALCULATION/VALIDATION USING ACTIVE-

X SERVER COMPONENTS

1. OBJECTIVES

In this chapter, you will learn

 the special issues relevant to writing Calculation/Validation routines

2. ILMFOREIGNCALC INTERFACE

The ILMForeignCalc Interface supports four functions that are called by SmartPlant P&ID at specific events. This

interface is supplied in the LMForeignCalc library. IMPLEMENTS ILMFOREIGNCALC statement incorporates this

interface into the Active-X component. The functions are described below:

2.1. DoCalculate

 Function DoCalculate(DataSource As LMADataSource, Items As LMAItems, PropertyName As

String, Value) As Boolean

 It is activated only if the ProgID of the class has been entered into the Calculation ID field of the

property in the DataDictionary Manager.

 SPPID triggers a call to the function when the user clicks on the ellipsis button on the Property

Grid next to the relevant property.

2.2. DoValidateItem

 Function DoValidateItem(DataSource As LMADataSource, Items As LMAItems, Context As

ENUM_LMAValidateContext) As Boolean

 It is activated only if the ProgID of the class has been entered into the Validation Program field of

the Database Item Type in the DataDictionary Manager.

 SPPID triggers a call to the function when the user place a new item, copy and paste and

existing item, and delete and item to/from drawing

 SPPID triggers a call to the function when the user de-selects from the item after changing some

property associated with the item.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 61

 The various contexts for the triggering are listed by the enumerated variable

LMForeignCalc.ENUM_LMAValidateContext, which has values of LMAValidateCreate,

LMAValidateCopy, LMAValidateDelete, LMAValidateModify and LMAValidateFiltered**.

 The call is made to this function generally after every relationship has been created and the

rules have been executed.

 In V2009 or later versions, The user can now create custom validation programs which will

execute when certain drawing events occur: Open, Close, Create, Delete, Modify, and Print a

drawing. These programs will reference ForeignCalc.dll and other automation dlls as needed.

The user can filter on the following cases/events Open, Close, Create, Delete, Modify, and Print

and add desired code for each case. A ProgID will need to be added for the Drawing ItemType

in DataDictionary Manager to fire off the validation program.

2.3. DoValidateProperty

 Function DoValidateProperty(DataSource As LMADataSource, Items As LMAItems,

PropertyName As String, Value) As Boolean

 It is activated only if the ProgID has been entered into Validation ID field of the property in the

DataDictionary Manager.

 SPPID triggers a call to the function when the user de-selects from the relevant property after

having modified it.

 The call is made to this method before SPPID accepts the user’s entry into the memory.

2.4. DoValidatePropertyNoUI

 Sub DoValidatePropertyNoUI(DataSource As LMADataSource, Items As LMAItems,

PropertyName As String, Value)

 It is activated only if the ProgID has been entered into Validation ID field of the property in the

DataDictionary Manager.

 SPPID triggers a call to this function when a rule modifies the property, such as at placement

time.

62 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

3. OBJECTS PASSED FROM THE MODELER

3.1. LMADataSource

This LMADataSource is initialized to the Project associated with the Drawing. A ProjectNumber

property will not return anything and it cannot be set to any other Project than the one associated

with the Drawing.

3.2. LMAItems

The select set of items is passed to the Calculation/Validation routines as a collection of LMAItems.

3.3. PropertyName

This is the name as listed in the ItemAttributions table of the DataDictionary.

3.4. Property Value

This is a Variant and can contain a NULL value.

4. SPECIAL ISSUES

4.1. Updating the Property Grid

In order to update the value seen through the Property Grid, it is necessary to set the value of the

‘Value’ variable and to return a TRUE for the Boolean return value of the ILMForeignCalc functions.

If the return value is FALSE (default), then it is assumed that the operation was not a success and

the old values are retained in the property grid.

4.2. Commit command

A Commit command must be issued to the object in question if the changes to its properties other

than the property being validated are to be made persistent.

4.3. Automatically Fire Up Validation

When user uses automation program to update a property, if the property has a validation ProgID in

its validation ProgID field, the validation will be automatically called up. For example, when user

update the Vessel’s prefix to “P” and commit the change, then validation will be fired up to generate

a new item tag for Vessel if the property TagPrefix has a validation ProgID in its validation ProgID

field.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 63

5. LABS

Lab 88: Create a Calculation Program.

Lab 89: Create a ValidateProperty Program.

Lab 90: Create a ValidateItem Program.

Lab 91: Create a Drawing Validation Program

Optional Lab 19: Calculation Validation (1).

Optional Lab 20: Calculation Validation (2).

Optional Lab 21: Property Validation (1).

Optional Lab 22: Property Validation (2).

Optional Lab 23: Item Validation (1).

Optional Lab 24: Item Validation (2).

Optional Lab 25: Item Validation (3).

64 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

CHAPTER 11: DELIVERED SOURCE CODE

1. OBJECTIVES

In this chapter, you will learn

 The delivered source code for some programs/utilities.

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 65

2. DELIVERED VALIDATION PROGRAMS

2.1. PlantItem Validation

2.1.1.This validation program gets fired up when an Item associated with ProgID in its validation

program field is Create, Copy, Modify, Delete or Filtered.

2.1.2.If it is Create, it fires up ValidateUnit.Unit to the Item with PlantGroup-Unit.

2.1.3.If it is Copy, it fires up ValidateUnit.Unit to the Item with PlantGroup-Unit, and blank the

value of TagSequenNo and LoopTagSuffix, then it fires up ItemTag.ItemTagFunc validation

program.

2.1.4.If it is Filtered, it fires up ItemTag.ItemTagFunc validation program.

2.1.5.There is no validation as delivered if it is Modify or Delete.

2.2. Unit Validation

2.2.1.This validation program gets fired up when PlantItem validation programs call it internally,

there is no UI for user to set it up to be fired up as other validation programs.

2.2.2. It checks if the Item being validated belongs to a drawing that is created under a

PlantGroup, if Yes, it gets the SP_ID value and populates SP_PlantGroupID ItemAttribution

for the Item being validated.

2.3. ItemTag Validation

2.3.1.This validation program can be fired up when a property is modified and/or calculation

button is clicked if that property is associated with a ProgID in its validation field and/or

calculation field. Then,

2.3.2.It generates new ItemTag or update existing ItemTag for Equipment, Piperun, Instrument,

Signalrun, Instrument Loop and Nozzle.

2.3.3.This validation program has three different scopes regarding uniqueness check against

items if it is project enabled. Scope 1 is when the uniqueness is against the active project

only, it could be as-built, or one of the projects. Scope 2 is the active project plus as-built.

Scope 3 is all projects plus as-built no matter what project the program is in.

2.3.4.Equipment ItemTag validation works as following way:

2.3.4.1. Changes on these properties will fire up validation program: TagPrefix,

TagSequnceNo, and TagSuffix

2.3.4.2. It generates ItemTag in following format: (TagPrefix)-

(TagSequnceNo)(TagSuffix)

66 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

2.3.4.3. It implements such mechanism that every Equipment gets a unique ItemTag,

except statements in 5 & 6

2.3.4.4. TagSequnceNo will be generated or updated based on number specified in

OptionSetting.

2.3.4.5. It validates all Equipment’ ItemTag except the EquipmentComp

2.3.4.6. If it is a Equipment that has PartOfPlantItem relationship with other PlantItem

(Parent), this Equipment could have a duplicated ItemTag with its parent.

2.3.5.Piperun ItemTag validation works as following way:

2.3.5.1. Changes on these properties will fire up validation program: TagSequnceNo,

TagSuffix, OperFluidCode and UnitCode.

2.3.5.2. It generates ItemTag in following format:

(UnitCode)(TagSequnceNo)(TagSuffix)-(OperFluidCode)

2.3.5.3. Although no validation program is associated with UnitCode directly, ItemTag

validation program gets fired up when UnitCode is modified, which is through Filtered

action of PlantItemValidation.Validate validation program.

2.3.5.4. It checks if every Piperun gets a unique ItemTag, if not, user may select to keep

duplicated or get a unique one

2.3.5.5. TagSequnceNo will be generated or updated based on number specified in

OptionSetting.

2.3.6.Signalrun with PlantItem Type is Pipe Run

2.3.6.1. It is Piperun with Pipe Run Class is Instrument.

2.3.6.2. Works exactly same way as Piperun ItemTag validation

2.3.7.Signalrun ItemTag validation works as following way:

2.3.7.1. Signalrun ItemTag validation actually shares the same validation function with

Instrument, but with fewer properties associated with Signalrun.

2.3.7.2. Changes on these properties will fire up validation program: TagSequnceNo and

TagSuffix.

2.3.8.Instrument ItemTag validation works as following way:

2.3.8.1. There are two ways to fire up Instrument ItemTag validation as described in 2 &

3.

2.3.8.2. Changes on these properties will fire up validation program:

MeasuredVariableCode, InstrTypeModifier, TagSequnceNo, LoopTagSuffix, and

TagSuffix.

2.3.8.3. More likely, Instrument ItemTag validation program gets fired up when user pick

up an Instrument Loop for the instrument. When user does so, by default rule,

MeasuredVariableCode is copied from Instrument Loop’s Loop Function,

TagSequnceNo is copied from Instrument Loop’ TagSequnceNo, and LoopTagSuffix

is copied from Instrument Loop’s TagSuffix

2.3.8.4. It generates ItemTag in following format:

(MeasuredVariableCode)(InstrTypeModifier)(TagSequnceNo)(LoopTagSuffix)(TagSuf

fix)

2.3.8.5. It checks if every Instrument gets a unique ItemTag, if not, user gets a warning,

but the duplicated ItemTag will be persisted.

2.3.8.6. As described in 3, TagSequnceNo is copied from Instrument Loop to which the

Instrument belongs.

2.3.9.Instrument Loop ItemTag validation works as following

2.3.9.1. Changes on these properties will fire up validation program: LoopFunction,

TagSequnceNo and TagSuffix

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 67

2.3.9.2. It generates ItemTag in following format: (LoopFunction)-

(TagSequnceNo)(TagSuffix)

2.3.9.3. It implements such mechanism that every Instrument Loop gets a unique

ItemTag.

2.3.9.4. TagSequnceNo will be generated or updated based on number specified in

OptionSetting.

2.3.10. Nozzle ItemTag validation works as following way:

2.3.10.1. Nozzle ItemTag validation validates uniqueness of Nozzle ItemTag per

Equipment basis. In other words, all Nozzles that belong to a Equipment must have

unique ItemTag, but Nozzles that belong to different Equipments can have duplicated

ItemTag.

2.4. OPC Validation

2.4.1.This validation program is fired up when an OPC is Created, Copied, Modified, Deleted or

Filtered. Then, it is performing ii.

2.4.2. Get a validate OPCTag for OPC and its paired OPC.

2.5. Drawing Revision Validation

This program validates the uniqueness of the drawing revision. If both major revision and minor

revision are duplicated for a drawing revision, then this program will prevent the duplicated values

accepted and give a message box to user indicating the problem.

2.6. SyncSlopeRiseRunAngle

This program is a calculation program for three properties of a PipeRun: Slope, Slope Rise and

Slope Run. If any two values are given by user, this program will calculate the third value. In

addition, if any given value is modified, this program will also re-calculate the other value

accordingly.

3. IMPORT INTERFACE AND DELIVERED IMPORT CODE

This program imports foreign data into SPPID. The foreign data could be format of Excel reports,

XML files, Text Files, etc.

Program has three major parts. First, read the data from external files, such as Excel, XML, or TXT

files. Second, it searches the SPPID database and determine if there are matching items based on

the criteria given in the program, such as SP_ID or ItemTag. Third, it will update the matching items

or create a new item in stockpile if there is no matching item.

68 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

4. COPYTRANSOFMATION INTERFACE AND PROGRAM

This program provide an interface for user to control how the data in new drawing is created when

copy/paste a drawing or when import a drawing. User can control what drawing template, data

format, tag and plant group, etc. in new drawing.

5. LABS

Optional Lab 26: Modify PlantItem Validation

Optional Lab 27: Modify ItemTag Validation

Optional Lab 28: Modify Import Code

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 69

CHAPTER 12: USING LMAUTOMATIONUTIL TO GET

FROM/TO INFORMATION

1. OBJECTIVES

In this chapter, you will learn

 the special issues relevant to use LMAutomationUtil to get from/to information for Piperun.

2. IMPORTANT METHODS

2.1. RunsNavigation

Sub RunsNavigation(objRun As LMPipeRun, FromCollection As Collection,
ToCollection As Collection, [InDeterminateCol as Collection)

objRun: LMPipeRun of the Piperun object to report of its from/to

FromCollection: Collection of items that are returned as FROM Items

ToCollection: Collection of items that are returned as TO Items

InDeterminateCol: Collection of items that can not be determined ad FROM or TO items

2.2. RunsNavigationAll

Sub RunsNavigationAll(objDS As LMADataSource, objRuns As String,
BuildInDeterminates As Boolean, OutDataCollection As Collection)

objDS: Current LMADataSource

objRuns: A string value with all SP_IDs of PipeRuns in format as ‘SP_ID’,’SP_ID’,…

BuildInDeterminates: A Boolean value, if it is TRUE, a FROM/TO item, such as PipeRun, will be

reported even no flow direction is defined on that PipeRun

OutDataCollection: Collection of Collection that includes the FROM/TO items

Sub RunsNavigationAll(objDS As LMADataSource, objRuns As String, BuildInDeterminates As

Boolean, OutDataCollection As Collection)

70 SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide

Each item, which is object as LMAutomationUtil.ToFromItem, in OutDataCollection is a collection of

all from/to item related to a Piperun.

LMAutomationUtil.ToFromItem has following functions/methods/properties:

BucketType: data type as LONG, 1 means From, 2 means To, 3 means BiDir

Connected_FlowDirection: data type as LONG, code list index value of FlowDirection of the piperun

that is reported as from/to item

Connected_ID: data type as string, from/to item's SP_ID

Connected_ItemTag: data type as string, from/to item's ItemTag

Connected_OPC_DrawingNumber: data type as string, if From/to item is OPC, and this OPC has pair

OPC on a drawing, then the Drawing Number of that drawing where its pair is sitting on.

Equipment_ItemTag: data type as string, if from/to item is NOZZLE, then the itemtag of the

Equipment the Nozzle is on.

Equipment_SP_ID: data type as string, if from/to item is NOZZLE, then the SP_ID of the Equipment

the Nozzle is on.

Init: internal method

ItemType: data type as string, the ItemType of the from/to item

PipeRun_FlowDirection: data type as LONG, code list index value of FlowDirection of the piperun

that is running from/to report

PipeRun_ID: data type as string, SP_ID of FlowDirection of the piperun that is running from/to report

3. LOGIC OF FROM/TO MACRO

To run from/to for a Piperun (Piperun A), flow direction has to be defined for the Piperun (Piperun B).

Then, by default, there are three item types can be reported as from/to items: OPC, Nozzle and

Piperun (Piperun B). For the Piperun (Piperun B) to be reported as from/to item, flow direction must

be defined on it also. However, if there the parameter “BuildInDeterminates” is set to TRUE in

function RunsNavigationAll, then the Piperun (Piperun B) will be reported as from/to item even

without flow direction defined, it will be reported with TFItem.bucketType=4, to print this information

out, user needs to modify the from/to code a little bit to print it out.

In addition, pipingcomp or inline instrument can be reported as from/to items also, but there are

procedures to turn it on. Please follow steps as followings:

1) add new property in Inline Component table

Open up Data Dictionary using the Data Dictionary Manager

Click on Database Items

Choose In Line Component

right click on the attributes of inline component and choose Add Property

In the form

 1. Name = EndComponent

 2. Display Name = End Component

 3. Data Type = Select List

SmartPlant P&ID 2014 R1 Automation Programming with VB Course Guide 71

 4. Select List = Boolean Values

 5. Format Value = Variable Length

 6. Default Value = False

 7. Maximum Length = 5

 8. Display To User = Yes

 9. Use for Filtering = No

 10. Category = {Identification}

Click OK and save the changes

2) set new property 'EndComponent' to True for any special PipingComp or Inline Instrument to be

True, then the special PipingComp or Inline Instrument will be returned in piperunNode Collection as

Piperun, Nozzle or OPC.

4. LABS

Optional Lab 29: New Macro for Instrument Report

Optional Lab 30: Improvement of from/to macro

