SmartPlant P&ID 2014 R1

Automation Programming with VB Labs

Process, Power & Marine

-
>
‘v ar

|

~
v 7 >

GEEmES .
l? - '

N
T P

-4
el -
N .

— Y %
"_".,k'

)

:
-
¥
&
-‘- ‘ -l“;
s ’.
! 14
it
IR i
5N
) TR
-

INTERGRAPH

Version 2014 R1 July 2016 DPID2-TP-100030A

Copyright
Copyright © 2012-2015 Intergraph® Corporation. All Rights Reserved. Intergraph is part of Hexagon.

Including software, file formats, and audiovisual displays; may be used pursuant to applicable software license agreement; contains
confidential and proprietary information of Intergraph and/or third parties which is protected by copyright law, trade secret law, and
international treaty, and may not be provided or otherwise made available without proper authorization from Intergraph Corporation.

Portions of this software are owned by Spatial Corp. © 1986-2016. All Rights Reserved.
Portions of the user interface are copyright © 2012-2016 Telerik AD.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the government is subject to restrictions as set forth below. For civilian agencies: This was
developed at private expense and is "restricted computer software" submitted with restricted rights in accordance with
subparagraphs (a) through (d) of the Commercial Computer Software - Restricted Rights clause at 52.227-19 of the Federal
Acquisition Regulations ("FAR") and its successors, and is unpublished and all rights are reserved under the copyright laws of the
United States. For units of the Department of Defense ("DoD"): This is "commercial computer software" as defined at DFARS
252.227-7014 and the rights of the Government are as specified at DFARS 227.7202-3.

Unpublished - rights reserved under the copyright laws of the United States.
Intergraph Corporation

305 Intergraph Way

Madison, AL 35758

Documentation

Documentation shall mean, whether in electronic or printed form, User's Guides, Installation Guides, Reference Guides,
Administrator's Guides, Customization Guides, Programmer's Guides, Configuration Guides and Help Guides delivered with a
particular software product.

Other Documentation

Other Documentation shall mean, whether in electronic or printed form and delivered with software or on Intergraph Smart Support,
SharePoint, or box.net, any documentation related to work processes, workflows, and best practices that is provided by Intergraph
as guidance for using a software product.

Terms of Use

a. Use of a software product and Documentation is subject to the End User License Agreement ("EULA") delivered with the
software product unless the Licensee has a valid signed license for this software product with Intergraph Corporation. If the
Licensee has a valid signed license for this software product with Intergraph Corporation, the valid signed license shall take
precedence and govern the use of this software product and Documentation. Subject to the terms contained within the
applicable license agreement, Intergraph Corporation gives Licensee permission to print a reasonable number of copies of the
Documentation as defined in the applicable license agreement and delivered with the software product for Licensee's internal,
non-commercial use. The Documentation may not be printed for resale or redistribution.

b. For use of Documentation or Other Documentation where end user does not receive a EULA or does not have a valid license
agreement with Intergraph, Intergraph grants the Licensee a non-exclusive license to use the Documentation or Other
Documentation for Licensee’s internal non-commercial use. Intergraph Corporation gives Licensee permission to print a
reasonable number of copies of Other Documentation for Licensee’s internal, non-commercial use. The Other Documentation
may not be printed for resale or redistribution. This license contained in this subsection b) may be terminated at any time and
for any reason by Intergraph Corporation by giving written notice to Licensee.

Disclaimer of Warranties

Except for any express warranties as may be stated in the EULA or separate license or separate terms and conditions, Intergraph
Corporation disclaims any and all express or implied warranties including, but not limited to the implied warranties of
merchantability and fitness for a particular purpose and nothing stated in, or implied by, this document or its contents shall be
considered or deemed a modification or amendment of such disclaimer. Intergraph believes the information in this publication is
accurate as of its publication date.

The information and the software discussed in this document are subject to change without notice and are subject to applicable
technical product descriptions. Intergraph Corporation is not responsible for any error that may appear in this document.

The software, Documentation and Other Documentation discussed in this document are furnished under a license and may be
used or copied only in accordance with the terms of this license. THE USER OF THE SOFTWARE IS EXPECTED TO MAKE THE
FINAL EVALUATION AS TO THE USEFULNESS OF THE SOFTWARE IN HIS OWN ENVIRONMENT.

Intergraph is not responsible for the accuracy of delivered data including, but not limited to, catalog, reference and symbol data.
Users should verify for themselves that the data is accurate and suitable for their project work.

Limitation of Damages

IN NO EVENT WILL INTERGRAPH CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL
INCIDENTAL, SPECIAL, OR PUNITIVE DAMAGES, INCLUDING BUT NOT LIMITED TO, LOSS OF USE OR PRODUCTION,
LOSS OF REVENUE OR PROFIT, LOSS OF DATA, OR CLAIMS OF THIRD PARTIES, EVEN IF INTERGRAPH CORPORATION
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

UNDER NO CIRCUMSTANCES SHALL INTERGRAPH CORPORATION’S LIABILITY EXCEED THE AMOUNT THAT
INTERGRAPH CORPORATION HAS BEEN PAID BY LICENSEE UNDER THIS AGREEMENT AT THE TIME THE CLAIM IS
MADE. EXCEPT WHERE PROHIBITED BY APPLICABLE LAW, NO CLAIM, REGARDLESS OF FORM, ARISING OUT OF OR IN
CONNECTION WITH THE SUBJECT MATTER OF THIS DOCUMENT MAY BE BROUGHT BY LICENSEE MORE THAN TWO (2)
YEARS AFTER THE EVENT GIVING RISE TO THE CAUSE OF ACTION HAS OCCURRED.

IF UNDER THE LAW RULED APPLICABLE ANY PART OF THIS SECTION IS INVALID, THEN INTERGRAPH LIMITS ITS
LIABILITY TO THE MAXIMUM EXTENT ALLOWED BY SAID LAW.

Export Controls

Intergraph Corporation’s software products and any third-party Software Products obtained from Intergraph Corporation, its
subsidiaries, or distributors (including any Documentation, Other Documentation or technical data related to these products) are
subject to the export control laws and regulations of the United States. Diversion contrary to U.S. law is prohibited. These Software
Products, and the direct product thereof, must not be exported or re-exported, directly or indirectly (including via remote access)
under the following circumstances:

a. To Cuba, Iran, North Korea, Sudan, or Syria, or any national of these countries.

b. To any person or entity listed on any U.S. government denial list, including but not limited to, the U.S. Department of
Commerce Denied Persons, Entities, and Unverified Lists,
http://www.bis.doc.gov/complianceandenforcement/liststocheck.htm, the U.S. Department of Treasury Specially Designated
Nationals List, http://www.treas.gov/offices/enforcement/ofac/, and the U.S. Department of State Debarred List,
http://www.pmddtc.state.gov/compliance/debar.html.

c. To any entity when Licensee knows, or has reason to know, the end use of the Software Product is related to the design,
development, production, or use of missiles, chemical, biological, or nuclear weapons, or other un-safeguarded or sensitive
nuclear uses.

d. To any entity when Licensee knows, or has reason to know, that an illegal reshipment will take place.

e. Any questions regarding export or re-export of these Software Products should be addressed to Intergraph Corporation’s
Export Compliance Department, Huntsville, Alabama 35894, USA.

Trademarks

Intergraph, the Intergraph logo, PDS, SmartPlant, FrameWorks, I-Sketch, SmartMarine, IntelliShip, ISOGEN, SmartSketch,
SPOOLGEN, SupportManager, SupportModeler, Sapphire, and Intergraph Smart are trademarks or registered trademarks of
Intergraph Corporation or its subsidiaries in the United States and other countries. Hexagon and the Hexagon logo are registered
trademarks of Hexagon AB or its subsidiaries. Microsoft and Windows are registered trademarks of Microsoft Corporation. ACIS is
a registered trademark of SPATIAL TECHNOLOGY, INC. Infragistics, Presentation Layer Framework, ActiveTreeView Ctrl,
ProtoViewCtl, ActiveThreed Ctrl, ActiveListBar Ctrl, ActiveSplitter, ActiveToolbars Ctrl, ActiveToolbars Plus Ctrl, and ProtoView are
trademarks of Infragistics, Inc. Incorporates portions of 2D DCM, 3D DCM, and HLM by Siemens Product Lifecycle Management
Software Il (GB) Ltd. All rights reserved. Gigasoft is a registered trademark, and ProEssentials a trademark of Gigasoft, Inc.
VideoSoft and VXFlexGrid are either registered trademarks or trademarks of ComponentOne LLC 1991-2013, All rights reserved.
Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its affiliates. Tribon is a
trademark of AVEVA Group plc. Alma and act/cut are trademarks of the Alma company. Other brands and product names are
trademarks of their respective owners.

Table of Contents

Table of Contents

PIEIACE. ... ettt 10
1. INnitialize LIMADALASOUNCEoviiiiiiieieinieieees et 11
2. Change Site and PIantcocvoiiiiiiiece e 12
3. ACCESS All TEEMTYPES. . .cieeeieciiecie ettt ettt sre e enes 13
4. ldentify an item in the database using sp_id and read its properties................... 15
5. Identify an item in the database and modify its properties..........c.cccecevvverrenenne. 16
6. INit ODbJeCts ReAd ONIY.....cvoiiiiiice e 17
T ROHDACKo 18
S o 0] o= To T- 1 (o] [PPSR 19
9. Access LMAALtributes ColECtIONccooiviiiiiiiiiieeesc e 20
10. Access ItemAttributions in detailS............coovveiiiiiiiii e, 21
11. Collect items from the database using filters...........cccooveiiiiiiicicccecee, 24
12. Collect items from the database using filters with multiple criteria............... 26
13. Using filters with criteria on Select List Datacccccoceevieiiicvie e, 28
14, UsiNg Compound FHITEEcviiiiie e 29
15. Collect filters from dataSOUICE.ccccviieiiiiieiiie e 31
16. ACCESS SEIECLLISEt DALAccuveuviiiiiiiiieeeee e 32
17. Create Filter with Select List data in Criteria..........cccceoeveiineniiiiiiee 33

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 3

Table of Contents

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Read History Property of Modelltem ... 34
Read Status Property of Modelltem............cccooiiiiiiiiiiecc e 35
Read Case Property of Modelltem ..o 36
ACCESS TTEBMNOTE ... s 38
ACCESS OPC ... 39
FHTEr fOr HISTOMIES.ot 40
Change Propertis at differnet object levels..........ccccovvviiiiieiei e 41
Read CaseProperty of VESSel ... 42
Read Flow Direction of PIPERUNcccoiiiiiiie e 43
ACCESS PIPING POINT ...t 44
ACCESS SIGNAI POINT ... 45
IMPHEATTEM ..o s 46
PartofPlantltem relationShips. ... 47
ACCESS INSTFUMENT LOOP ... 48
LOAdINSTFUMENTS ...ttt 50
Identify Nozzle and EQUIPMENT ..o 51
PipingComp and INHNECOMPocviiiiiiiiieieee e 52
Insturment and INHINECOMP ..o 53
Offline Instrument and SigNalRUN ...t 54
ACCeSS INSTrUMEN FUNCLIONSoiviiiiiiieiee e 55

4 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

Table of Contents

38.

39.

40.

41.

42.

43.

44,

45.

46.

471.

48.

49,

50.

51.

52.

53.

54,

55.

56.

S7.

Identify Connectors Of @ PIPEIUN ..o 57
Find File Nmae of @ Symbol ..o 59
Find X, Y Coordinates of Symbol..........cccooooiiiiiiii e 60
Find X, Y Coordinates of PIPEIUN.........cccoiiiiiiieiieie e 61
Find Labels of & SymbOl ... 62
Find Parent Representation of @ Label ... 63
Find Parent Drawing for a Symbol ... 64
Find Active Drawing and Plantltems in it..........cocoviiniiienccseseen 65
Filter for Items In Plant Stockpile..........ccoooiiiiiie 66
Identify Items connected t0 & PIPEIUNc.ooeiiiiiiiiiiieee s 67
Identify the PipeRun associated with the PipingComp.......c.ccoovvvniiinnenne 69
Navigate items to get Parent IeMcooviiiiiiee e 70
Navigate through BranChPOINT............coiiiiiiiiieeee e 72
Navigate Through OPC ..o 75
Access Relationship from Representation ..., 77
ACCESS INCONSISTEINCY ...ttt bbb 79
ACCESS RUIERETEIENCE ... 81
Access Plantgroup from Plantltem..........ccoooiiiiiiiiie e, 83
Access Plantgroup from DFrawing.......coceeeiiieieniseseseee e 84
Access Customized PlantgroUP.......c.cccveiveieieereeie e see e 85

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 5

Table of Contents

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

ACCESS WOIFKSNAIE STIE ..ot 86
ACCESS DIaWINGSITEeeiviiiiiie et nneas 88
Workshare Awareness in LIama ... 89
ACCESS ACTIVE PIOJECT ..ot 90
How to access Plant from Project ... 91
Access Claim Status Of TTEMScoviiiiiee e 92
ACCESS OPTIONSELLINGS ..ottt bbbt 93
Create a Vessel and Place into Stockpile ... 94
Place a Vessel 0N @ DraWiNg........cooiiiiiiieieieiene e 95
Place nozzles and trays 0N @ VESSElcccviiiiiiiiiiirieeee e 96
Place Labels 0N @ VESSEL ..o 98
PIACE OPC ... ettt 100
Place OPC From STOCKPIIE. ... 101
Place Piperun with PIDPIaCERUNcooiiiiiiiiie e, 102
JOIN TWO PIPEIUNS. ...ttt 103
PLACE GAP .ttt bbbt 105
Place BOUNAEdSNAPe.........ccoiiiiiiiieiicieee e 106
Place ASSEMDIYouiiiiiiiiiee s 108
Delete Vessel Trom DIaWingccocciiiiiieirieiese s 109
Delete Vessel from MOEl ..., 110

6 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

Table of Contents

78. RePIace SYMDOL ..o 112
79. Replace Label ..o 113
80. REPIACE OPC ... e 114
81. Modify Parametric SYmbOl...........coooviiiiiie s 115
82. Locate X, Y Coordinates of Signal Points on an Instrument...............cc........ 116
83. Place INSTFUMENT LOOPvouveieiiiieiiisicsie et 117
84. Find and Replace Labels ... 118
85. Open and Close an exiSting draWing...........ccoceverireninieienese e 120
86. Create, Open and Close a NeW draWwing........ccocevireririeienene e 121
87. Comprehensive Automation Lab............cccociiiiiiiien 122
88. Create a Calculation Program ... 124
89. Create a ValidateProperty Programcccccooiiriniiniiienese e 126
90. Create a Validateltem Program ... 129
91. Create a Drawing Validate Programccccooiirniniiienese e 130
OPLIONAI LADS ... s 133
1. Write a simple VB code and debug it.........ccoeiiiiniiiii e 133
2. Write a simple VB code USiNg @ FOIM........ccocoiiiiiiiiiiiieeie s 133
3. Use the Object Browser to view Automation ODjJecCtS..........cccccereiiiiiiniinisieeees 134
4. Write VB client application to access Microsoft Excel’s Automation objects......135
5. Create an active-x server and a client applicationcccccvvvvevveveiieese e, 137

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 7

Table of Contents

6. Create an interface, an implementation, and a client application......................... 139
7. Modify Property Based on Construction Statuscccceoverenenenineniseseeeees 141
8. Serach Items and Modify PrOPEIrtY ..o 141
9. MOdify Case ProCess Data...........cccuiiiiiieiiiiieiiesie sttt 141
10. Find Implied Items and Modify Their Propertycccocooveieninninecieeens 142
11. Count NOZZIES 0N 8 VESSE ... 142
12. Search Items Active Drawing StOCKPIIE........c.coiiiiiiiiiiiiece e 142
13. Navigate from Off-line Instrument to Process PIpeRUNcccccociiriniiniinienn. 143
14. FINd OPC and FrOM/TO ...ooueiiiiiieiesie e 143
15. How to Check if a Drawing Belong to Active Siteccoovieiiiiiininiseceee, 143
16. Label Find and Replace ULHTYcoiiiiiiiiiiec e 144
17. Automatically create NEW drawingsccoceierereriniiinieieree e 144
18. NC/NO Valves Replacement ULtyccccooeiiiiiiiiiiiicc e 145
19. Calculation Vahidation (1)cccooeieieiiiinieiee e 145
20. Calculation Validation (2)ccouiiiiiiiiiese e 146
21. Property Validation (1)........ccocooiiiiiiiiieieeie e 146
22. Property Validation (2).........cocooiiiiiiieeieese s 146
23, 11eM ValidAtION (L) ...eceeieieieieeie e e 147
24, 11eM ValIdATION (2) ...eiuiiiiiieieies et 147
25. 1temM Validation (3).....ceecueiiieiieie ettt e e sraere e 147

8 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

Table of Contents

26. Modify Plantltem Validationccooiiiiiiiiiiieeeee e 148
27. Modify ItemTag Validation ..o 148
28. MOdIfy IMPOIt COUE ... 148
29. New Mocro for InStrument REPOITcovoiviiiiiiiiie e 149
30. Improvement of From/TO MACKOccveiiiiiiiiiiiiieieeee e 149

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 9

Preface

This document is a user’s guide for SmartPlant P&ID 2014 R1 automation
programming with VB labs.

Send documentation comments or suggestions to PPMdoc@intergraph.com

General Instructions For Labs:
1. You will need to reference following dlls for your lab programs, which are located at ““...\Program Files
(x86)\SmartPlant\P&ID Workstation\bin”.

(1) Intergraph SmartPlant P&ID Logical Model Automation — LLAMA.DLL

(2) Intergraph SmartPlant P&ID Placement Automation — Plaice.DLL

(3) Intergraph SmartPlant P&ID Automation — PIDAuto.DLL

(4) Intergraph SmartPlant PID Foreign Calculation Adapter - LMForeignCalc.DLL
2. Most labs expect a Boolean variable to be defined to indicate user’s choice of using PIDDatasource or New
LMADatasource

Private bInUsePIDDatasource As Boolean

3. Some constants need to be defined to hold SP_ID of some items, of course you need to place these items first. |
provide an assembly for you to place into a drawing at the beginning of this course. Examples are:

Private Const CONST_SPID_Modelltem As String = "C76EF274525A4345A6 ACE1D179362899"

Private Const CONST_SPID_ltemNote As String = "9A3B02C271754A8BB46DC4D02F9F0954"

Private Const CONST_SPID_OPC As String = "A8EC5233227A4F3AB480E9AB39205BCC"

Private Const CONST_SPID_Vessel As String = "C76EF274525A4345A6 ACE1D179362899"

Private Const CONST_SPID_PipeRun As String = "8B283FA8472F4E3BABB6AF573DF161F4"

Private Const CONST_SPID_PipingComp As String = "59D6251324574734B9883C8E89E57B4E"

Private Const CONST_SPID_Offlinelnstrument As String = "7EAB72658BA04FD8BD67CFEB4D96DD37"
Private Const CONST_SPID_Inlinelnstrument As String = "BC21A415E803496EBDA87129F5F5F540"

Private Const CONST_SPID_LabelPersist As String = "BOE88D821E8145269E5B398B858555A8"

10 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

mailto:PPMdoc@intergraph.com.?subject=Documentation%20Comments

1. INITIALIZE LMADATASOURCE

a) Purpose
To initialize LMADataSource with different methods and access some properties of it.

b) Problem Statement

Write a standalone application to initialize the LMADataSource with New LMADatasource and PIDDatasource,
then access some properties of it, such as ProjectNumber, SiteNote, etc.

c) Solution

1. Using Set new LMADataource or PIDDataSource to initialize LMADataSource.
2. Use Debug.Print method to print out the required properties.

¢ Example Code
Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Debug.Print datasource.ProjectNumber

Debug.Print datasource.SiteNode

Debug.Print datasource.IsSatellite

Debug.Print datasource.GetSystemEditingToolbarSetting

Set datasource = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 11

2. CHANGE SITE AND PLANT

a) Purpose
To change active site and active plant within LLAMA program.

b) Problem Statement

Place a Vessel into active drawing, then close the drawing. Then switch the smartplant to another site and another
plant, then create a new drawing and place another Vessel in it.

c) Solution

Change the site and plant within your program to get access to that Vessel.

¢ Example code
Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Debug.Print datasource.SiteNode
Debug.Print datasource.ProjectNumber

Dim objVessel As LMVessel
Set objVessel = datasource.GetVessel CONST_SPID_Vessel)
Debug.Print objVessel. Attributes("ItemTag").Value

Set datasource = New LMADataSource
datasource.SiteNode = " C:\PID_Data\SiteHxGN\SmartPlantV4.ini"
datasource.ProjectNumber = "TSPL_Plant! TSPL_Plant"

Set objVessel = datasource.GetVessel("C76EF274525A4345A6ACE1D179362899™)
Debug.Print objVessel. Attributes("ItemTag").Value

Set datasource = Nothing
Set objVessel = Nothing

12 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

3. ACCESS ALL ITEMTYPES

a) Purpose

To access all ItemTypes within a Plant

b) Problem Statement

Access to an LMADatasource, then print out all Item Types within that LMADatasource.
There are total 48 Item Types in V2014, which includes:

AreaBreak
Drawing
DrawingProject
DrawingVersion
DuctRun
DuctingComp
DuctingPoint
EquipComponent
Equipment
EquipmentOther
Exchanger
GlobalDrawing
History
HydraulicCircuit
InstrLoop
Instrument
ItemNote

Label

LabelPersist
Mechanical
Modelltem
ModelltemClaim
ModelltemClaimOffline
ModelltemClaimRep
ModelltemLookup
Note

Nozzle

OPC

Package

PipeRun

Pipeline
PipingComp
PipingPoint
Plantltem
PlantltemGroup
PlantltemGroupOther
Representation
RepresentationLookup
Revision

Room
RoomComponent
SafetyClass
SignalPoint
SignalRun

System

Task
TaskltemProperty
Vessel

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 13

c) Solution

1. Get object LMADatasource
2. Loop through LMADatasource.ltemTypes

¢ Example code

Dim datasource As LMADataSource
Dim i As Integer

If Not biInUsePIDDatasource Then
Set datasource = New LMADataSource
Else
Set datasource = PIDDataSource
End If
Debug.Print "Total ItemTypes: " & datasource. TypeNames.Count
For i = 1 To datasource.TypeNames.Count
Debug.Print datasource. TypeNames.item(i)
Next

Set datasource = Nothing

14 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

4. IDENTIFY AN ITEM IN THE DATABASE USING SP_ID AND READ ITS PROPERTIES

Purpose

To access a vessel using SP_ID values and read its properties

b) Problem Statement

Place a vessel. Write a standalone application to retrieve the following properties of the vessel:
SP_ID, EquipmentSubClass, EquipmentType, aabbcc_code, Class, Item TypeName, volumeRating, and
volumeRating in Sl units.

c) Solution

1. Dim a LMVessel object and get the object using LMADataSource.GetVessle method.
2. Use Debug.Print method to print out the required properties.

¢ Example code
Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objVessel As LMVessel
Set objVessel = datasource.GetVessel(CONST_SPID_Vessel) 'get objVessel by id

'print out some objVessel's properties

Debug.Print "objVessel ID =" & objVessel.ID

Debug.Print "Equipment Subclass =" & objVessel.Attributes("EquipmentSubclass").Value
Debug.Print "Equipment Type =" & objVessel . Attributes("EquipmentType™).Value
Debug.Print "aabbcc code =" & objVessel. Attributes("aabbcc_code™).Value

Debug.Print "Class = " & objVessel.Attributes("Class").Value

Debug.Print "Item TypeName =" & objVessel.Attributes("ItemTypeName").Value
Debug.Print "Volume Rating =" & objVessel.Attributes("VolumeRating").Value

Debug.Print "Volume Rating in SI units =" & objVessel. Attributes("\VolumeRating").SIValue

Set datasource = Nothing
Set objVessel = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 15

5. IDENTIFY AN ITEM IN THE DATABASE AND MODIFY ITS PROPERTIES

Purpose

To modify its properties of items in the database

b) Problem Statement

Place a vessel. Write a standalone application to modify the following property of the vessel:
Name

c) Solution

1. Dim a LMVessel object and get the object using LMADataSource.GetVessle method.
2. Change the value of required properties

3. Use LMVessel.Commit to commit the change to database

¢ Example code
Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

datasource.BeginTransaction

Dim objVessel As LMVessel

Set objVessel = datasource.GetVessel[CONST_SPID_Vessel) ‘'get vessel by id
objVessel. Attributes("Name").Value = "Vessel 7" ‘assign value to vessel name
objVessel. Attributes("DesignBy").Value = "By B"

objVessel.Commit

datasource.CommitTransaction

Set objVessel = Nothing
Set datasource = Nothing

16 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

6. INIT OBJECTS READ ONLY

a) Purpose

To use property of LMADatasource: InitObjectsReadonly

b) Problem Statement

Place a Piperun. Write a standalone application to get LMPiperun, then set the InitObjectsReadonly to True, and

check if the property “Name” can be changed with drawing close and New LMADatasource is used.

c) Solution

¢ Example code

Dim datasource As LMADataSource
Dim objPipeRun As LMPipeRun

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

datasource.InitObjectsReadonly = True

datasource.BeginTransaction

Set objPipeRun = datasource.GetPipeRun(CONST_SPID_PipeRun) 'get PipeRun by id
objPipeRun.Attributes("Name™).Value = "TEST1" ‘assign value to PipeRun name
objPipeRun.Commit

datasource.CommitTransaction

Set objPipeRun = Nothing
Set datasource = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 17

7. ROLLBACK

a) Purpose
To rollback a transaction by automation program

Problem Statement

Place a Piperun. Write a standalone application to get LMPiperun, then change the property “Name” of the piperun
and CommitTransaction, then change the property “Name” again, but this time RollbackTransaction, check which
value is commited.

c) Solution
1. Dim a LMVessel object and get the object using LMADataSource.GetVessle method.

2. Dim a LMEquipment object and get the object using LMADataSource.GetEquipment method.
3. Use LMVessel. AsLMAItem and LMEquipment.AsLMAEquipment method to transferto ~ LMAIltem.

¢ Example code

Dim datasource As LMADataSource
Dim objPipeRun As LMPipeRun

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

datasource.BeginTransaction

Set objPipeRun = datasource.GetPipeRun(CONST_SPID_PipeRun) ‘get PipeRun by id
objPipeRun.Attributes("Name").Value = "TEST1" ‘assign value to PipeRun name
objPipeRun.Commit

datasource.CommitTransaction

datasource.BeginTransaction

objPipeRun.Attributes("Name™).Value = "TEST2" ‘assign value to PipeRun name
objPipeRun.Commit

datasource.RollbackTransaction

Set objPipeRun = Nothing
Set datasource = Nothing

18 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

8. PROPAGATION

a) Purpose
To set propagation to True or False from automation program
b) Problem Statement

Place a PipeRun, then place couple branch PipeRuns to this piperun. Write a standalone application to modify the
property “SupplyBy” of the first PipeRun with Propagation set to True and modify the property “CleaningReqmts”
with Propagation set to False.

c) Solution

¢ Example code

Dim datasource As LMADataSource
Dim objPipeRun As LMPipeRun

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

datasource.BeginTransaction

Set objPipeRun = datasource.GetPipeRun(CONST_SPID_PipeRun) ‘get PipeRun by id
datasource.PropagateChanges = True

objPipeRun.Attributes("SupplyBy").Value = "By D" ‘assign value to PipeRun Supply By
objPipeRun.Commit

datasource.PropagateChanges = False

objPipeRun.Attributes("CleaningRegmts™).Value = "CC1" ‘assign value to PipeRun Supply By
objPipeRun.Commit

datasource.CommitTransaction

Set objPipeRun = Nothing
Set datasource = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 19

9. ACCESS LMAATTRIBUTES COLLECTION

Purpose
To access LMAAttributes collection of LLAMA object.

Problem Statement

Place a Vessel and get the LMVessel object, then loop through its Attributes collection.

Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objVessel As LMVessel
Set objVessel = datasource.GetVessel[CONST_SPID_Vessel) ‘'get vessel by id

Dim objAttr As LMAAttribute
Debug.Print "Total attributes for Vessel: " & objVessel.Attributes.Count
For Each objAttr In objVessel.Attributes
Debug.Print "Attribute Name=" & objAttr.name & Space(50 - Len(objAttr.name)) & " Value=" &
objAttr.Value
Next

Debug.Print objVessel. Attributes.item("ProcessAlternateDesign.Max.Pressure™).Value
Debug.Print "Total attributes for Vessel: " & objVessel.Attributes.Count
For Each objAttr In objVessel.Attributes
Debug.Print "Attribute Name=" & objAttr.name & Space(50 - Len(objAttr.name)) & " Value=" &
objAttr.Value
Next

Set datasource = Nothing
Set objVessel = Nothing
Set objAttr = Nothing

20 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

10. ACCESS ITEMATTRIBUTIONS IN DETAILS

a) Purpose
To access ItemAttributions of different items in details

b) Problem Statement

Place all kinds of SmartPlant P&ID items, such as Vessel, Mechanical, Heat Exchanger, then print their
ItemAttributions information in details in format of Excel, which includes attribution format, index if codelist,
calculation ProgID and validation ProglD

c) Solution

1. Getltems
2. Needs access LMAAttribute.ISPAttribute
3. Printresult in Excel

¢ Example code

Dim datasource As LMADataSource
Dim i As Integer

Dim objAttr As LMAAttribute

Dim vValue As Variant

Dim objVessel As LMVessel

If Not bInUsePIDDatasource Then
Set datasource = New LMADataSource
Else
Set datasource = PIDDataSource
End If
Dim objExcel As Excel.Application

Set objExcel = CreateObject("Excel.Application™)
objExcel.Visible = True

Dim xIWorkbook As Excel.Workbook
Set xIWorkbook = objExcel.Workbooks.Add

Dim xIWorksheet As Excel.Worksheet
Set xIWorksheet = xIWorkbook.Worksheets("SHEET1")

Dim Row As Long
Dim CodeListCount As Long

Row =1
xIWorksheet.Cells(Row, 1) = "ltemType"
xIWorksheet.Cells(Row, 2) = "Attribute Name"

xIWorksheet.Cells(Row, 3) = "Format"

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 21

xIWorksheet.Cells(Row, 4) = "IsCodeList"
xIWorksheet.Cells(Row, 5) = "CodeL.ist Index"
xIWorksheet.Cells(Row, 6) = "Calculation ProgID"

xIWorksheet.Cells(Row, 7) = "Validation ProgID"
Row = Row + 1

Set objVessel = datasource.GetVessel(CONST_SPID_Vessel)
xIWorksheet.Cells(Row, 1) = "Total attributions for Vessel: " & objVessel.Attributes.Count
Row = Row + 1
For Each objAttr In objVessel. Attributes
xIWorksheet.Cells(Row, 1) = objVessel. AsSLMAItem.ltemType
xIWorksheet.Cells(Row, 2) = objAttr.name
xIWorksheet.Cells(Row, 3) = objAttr.ISPAttribute. Attribution.Format
On Error Resume Next
CodeListCount =0
CodeL.istCount = objAttr.ISPAttribute. Attribution.ISPEnumAtts.Count
On Error GoTo 0

If CodeListCount >0 Then
xIWorksheet.Cells(Row, 4) = "True"
Else
xIWorksheet.Cells(Row, 4) = "False"
End If

xIWorksheet.Cells(Row, 5) = objAttr.Index
xIWorksheet.Cells(Row, 6) = objAttr.ISPAttribute.Attribution.CalculationProglD
xIWorksheet.Cells(Row, 7) = objAttr.ISPAttribute.Attribution.ValidationProgID
Row = Row + 1

Next

Row = Row + 1
On Error Resume Next
vValue = objVessel. Attributes("ProcessDesign.Max.Pressure")
On Error GoTo 0
xIWorksheet.Cells(Row, 1) = "Total attributions for Vessel: " & objVessel. Attributes.Count
Row = Row + 1
For Each objAttr In objVessel. Attributes
xIWorksheet.Cells(Row, 1) = objVessel. AsSLMAIltem.ltemType
xIWorksheet.Cells(Row, 2) = objAttr.name
xIWorksheet.Cells(Row, 3) = objAttr.ISPAttribute. Attribution.Format
On Error Resume Next
CodeListCount =0
CodeL.istCount = objAttr.ISPAttribute. Attribution.ISPEnumAtts.Count
On Error GoTo 0
If CodeListCount >0 Then
xIWorksheet.Cells(Row, 4) = "True"
Else
xIWorksheet.Cells(Row, 4) = "False"
End If
xIWorksheet.Cells(Row, 5) = objAttr.Index
xIWorksheet.Cells(Row, 6) = objAttr.ISPAttribute.Attribution.CalculationProglD
xIWorksheet.Cells(Row, 7) = objAttr.ISPAttribute. Attribution.ValidationProgID
Row = Row + 1

22 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

Next

Dim strFileName As String

strFileName = Environ("TEMP") & "\ItemAttributions.xIs"
objExcel.Workbooks(1).SaveAs (strFileName)
xIWorkbook.Close True

objExcel.Quit

MsgBox "Done"

Set datasource = Nothing
Set objVessel = Nothing
Set xIWorksheet = Nothing
Set xIWorkbook = Nothing
Set objExcel = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 23

11. COLLECTITEMS FROM THE DATABASE USING FILTERS

a) Purpose
To access objects created through SPPID using filters

b) Problem Statement

Place a piperun and give it a TagSuffix value. Retrieve the piperun by filtering on the TagSuffix value = “P” and
populate the Name property with value “P-Run”

c) Solution

1. Dim LMAFilter and LMACriterion
2. Add LMACrtiterion to LMAFilter
3. Call LMPipeRuns.Collect method by using the LMAFilter

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter

Dim criterion As LMACtiterion
Set criterion = New LMACriterion
Set objFilter = New LMAFilter

criterion.SourceAttributeName = "TagSuffix"
criterion.ValueAttribute = "P"
criterion.Operator = "'="
objFilter.ItemType = "PipeRun”

objFilter.Criteria.Add criterion

Dim piperun As LMPipeRun

Dim piperuns As LMPipeRuns

Set piperuns = New LMPipeRuns
piperuns.Collect datasource, Filter:=objFilter

Debug.Print "Number of Piperuns retrieved =" & piperuns.Count
datasource.BeginTransaction
For Each piperun In piperuns

Debug.Print piperun.Attributes(" TagSuffix").Value

Debug.Print "Piperun ID =" & piperun.ID
piperun.Attributes("Name").Value = "P-Run"
piperun.Commit

Next

datasource.CommitTransaction

24 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

Set datasource = Nothing
Set objFilter = Nothing
Set criterion = Nothing
Set piperun = Nothing
Set piperuns = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 25

12. COLLECT ITEMS FROM THE DATABASE USING FILTERS WITH MULTIPLE
CRITERIA

Purpose

To access objects created through SPPID using filters with multiple criteria

b) Problem Statement

Place three piperuns and set OperFluidCode="KD” for one piperun, TagSuffix = “PT” for another pipe run and
Name="V"” for another pipe run. Retrieve the three piperuns by filtering using Multiple Criteria.

c) Solution

1. Dim LMAFilter and LMACtriterion
2. Add multiple LMACtiterion to LMAFilter
3. Call LMPipeRuns.Collect method by using the LMAFilter

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter
Set objFilter = New LMAFilter

objFilter.Criteria. AddNew ("FirstOne")
objFilter.Criteria.item("FirstOne").SourceAttributeName = "ltemTag"
objFilter.Criteria.item("FirstOne").ValueAttribute = "%K%"
objFilter.Criteria.item("FirstOne").Operator = "like"
objFilter.ItemType = "PipeRun"

objFilter.Criteria. AddNew ("SecondOne")
objFilter.Criteria.item("SecondOne").SourceAttributeName = "TagSuffix"
objFilter.Criteria.item("SecondOne").ValueAttribute = "P_"
objFilter.Criteria.item("SecondOne").Operator = "like"
objFilter.Criteria.item("SecondOne").Conjunctive = False

objFilter.Criteria. AddNew (“ThirdOne™)
objFilter.Criteria.item("ThirdOne™).SourceAttributeName = "Name"
objFilter.Criteria.item("ThirdOne").ValueAttribute = Null
objFilter.Criteria.item("ThirdOne").Operator = "1="
objFilter.Criteria.item("ThirdOne™).Conjunctive = False

Dim piperun As LMPipeRun

Dim piperuns As LMPipeRuns

Set piperuns = New LMPipeRuns
piperuns.Collect datasource, Filter:=objFilter

Debug.Print "Number of piperuns filtered = " & piperuns.Count

26 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

For Each piperun In piperuns
Debug.Print "ID =" & piperun.ID
Debug.Print "ltemTag = " & piperun.Attributes("ltemTag").Value
Debug.Print "TagSuffix = " & piperun.Attributes("TagSuffix").Value
Debug.Print "Name =" & piperun.Attributes("Name").Value

Next

Set datasource = Nothing
Set objFilter = Nothing
Set piperun = Nothing
Set piperuns = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 27

13. USING FILTERS WITH CRITERIA ON SELECT LIST DATA

a) Purpose
To access objects created through SPPID using filters with multiple criteria

b) Problem Statement

Place two piperuns and set NominalDiameter=2" for the piperuns. Then delete one piperun from model. Retrieve
the active piperun by filtering using Criteria on ItemStatus and NominalDiameter.

c) Solution

Need to find the index for ItemStatus="Active” and NominalDiameter=2".
¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter
Set objFilter = New LMAFilter

objFilter.Criteria. AddNew ("FirstOne")
objFilter.Criteria.item("FirstOne™).SourceAttributeName = "ItemStatus"
objFilter.Criteria.item("FirstOne™).ValueAttribute = "1"

objFilter.Criteria.item("FirstOne™).Operator = "=
objFilter.ItemType = "PipeRun"

objFilter.Criteria. AddNew (*"SecondOne")
objFilter.Criteria.item("SecondOne™).SourceAttributeName = "NominalDiameter"
objFilter.Criteria.item("SecondOne™).ValueAttribute = "5064" '2"
objFilter.Criteria.item("SecondOne™).Operator = "="
objFilter.Criteria.item("SecondOne™).Conjunctive = True

Dim piperun As LMPipeRun

Dim piperuns As LMPipeRuns

Set piperuns = New LMPipeRuns
piperuns.Collect datasource, Filter:=objFilter

Debug.Print "Number of piperuns filtered =" & piperuns.Count
For Each piperun In piperuns
Debug.Print "ID =" & piperun.ID
Debug.Print "ItemStatus = " & piperun.Attributes("ItemStatus™).Value
Debug.Print "NominalDiameter =" & piperun.Attributes("NominalDiameter").Value
Next
Set datasource = Nothing
Set objFilter = Nothing
Set piperun = Nothing
Set piperuns = Nothing

28 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

14. USING COMPOUND FILTER

a) Purpose
To access objects created through SPPID using compound filter

b) Problem Statement

Place six piperuns and set NominalDiameter=1”, 2, and 3” for the piperuns. Then, delete three piperuns from
model. Retrieve the piperuns with ItemStatus="Active” and NominalDiameter equals 1” or 2” by using compound
filter.

c) Solution

Comound allows conjunctive as both “And” and “Or”.
¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter
Dim objChildFilterl As LMAFilter
Dim objChildFilter2 As LMAFilter

Set objFilter = New LMAFilter
Set objChildFilterl = New LMAFilter
Set objChildFilter2 = New LMAFilter

objChildFilterl.ltemType = "PipeRun"

objChildFilterl.name = "Filter 1"

objChildFilterl.Criteria. AddNew ("FirstOne™)
objChildFilterl.Criteria.item("FirstOne").SourceAttributeName = "ltemStatus"
objChildFilterl.Criteria.item("FirstOne").ValueAttribute = "1"
objChildFilterl.Criteria.item("FirstOne").Operator = "'="

objChildFilter2.ltemType = "PipeRun"

objChildFilter2.name = "Filter 2"

objChildFilter2.Criteria. AddNew ("FirstOne")
objChildFilter2.Criteria.item(*"FirstOne").SourceAttributeName = "NominalDiameter"
objChildFilter2.Criteria.item("FirstOne").ValueAttribute = "5032" '1"
objChildFilter2.Criteria.item("FirstOne").Operator = "'="

objChildFilter2.Criteria. AddNew ("SecondOne")
objChildFilter2.Criteria.item(*"SecondOne").SourceAttributeName = "NominalDiameter"
objChildFilter2.Criteria.item("SecondOne").ValueAttribute = 5064 '2"
objChildFilter2.Criteria.item("SecondOne").Operator = "'="
objChildFilter2.Criteria.item("SecondOne").Conjunctive = False

objFilter.ltemType = "PipeRun"

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 29

objFilter.FilterType = 1 '1 for compound filter, 0 for simple filter
objFilter.ChildLMAFilters.Add objChildFilterl
objFilter.ChildLMAFilters.Add objChildFilter2
objFilter.Conjunctive = True

Dim piperun As LMPipeRun

Dim piperuns As LMPipeRuns

Set piperuns = New LMPipeRuns
piperuns.Collect datasource, Filter:=objFilter

Debug.Print "Number of piperuns filtered = " & piperuns.Count
For Each piperun In piperuns

Debug.Print "ItemStatus = " & piperun.Attributes("ltemStatus™).Value

Debug.Print "NominalDiameter =" & piperun.Attributes("NominalDiameter").Value
Next

Set datasource = Nothing

Set objFilter = Nothing

Set objChildFilterl = Nothing
Set objChildFilter2 = Nothing
Set piperun = Nothing

Set piperuns = Nothing

30 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

15. COLLECT FILTERS FROM DATASOURCE

a) Purpose
To collect all filters in SPPID from datasource

b) Problem Statement

Write a standalone application to retrieve all filters in SPPID from datasource. Display the Item Type and the first
Criterion (if one exists) in the filter for those of ItemType = “Instrument”.

c) Solution

1. Dim LMAFilter
2. Call LMADataSource.Filters method to get all LMAFilters in database
3. Use For ... Next to loop through the LMAFilters and print out required properties

¢ Example code

Dim datasource As LMADataSource
If Not bInUsePIDDatasource Then
Set datasource = New LMADataSource
Else
Set datasource = PIDDataSource
End If
Dim objFiltersCollection As Collection
Set objFiltersCollection = datasource.Filters

Debug.Print "Number of filters = " & objFiltersCollection.Count
Dim objFilter As LMAFilter
For Each objFilter In datasource.Filters 'objFiltersCollection
If objFilter.ItemType = "Instrument” Then
If Not objFilter.Criteria Is Nothing Then
If objFilter.Criteria.Count >= 1 Then
Debug.Print "Filter item type = " & objFilter.ItemType & Space(20 - Len(objFilter.ItemType)) _
& "Filter name =" & objFilter.name & Space(50 - Len(objFilter.name)) _
& objFilter.Criteria.item(1).SourceAttributeName & Space(30 -
Len(objFilter.Criteria.item(1).SourceAttributeName)) _
& objFilter.Criteria.item(1).Operator & Space(5) _
& objFilter.Criteria.item(1).ValueAttribute & Space(40 - Len(objFilter.Criteria.item(1).ValueAttribute))
End If
End If
End If
Next

'use the pre-defined filter

Set objFilter = datasource.Filters.item("Active Equipment")
Dim objEquipments As LMEquipments

Set objEquipments = New LMEquipments
objEquipments.Collect datasource, Filter:=objFilter
Debug.Print objEquipments.Count

Set datasource = Nothing

Set objFilter = Nothing

Set objFiltersCollection = Nothing

Set objEquipments = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 31

16. ACCESS SELECTLIST DATA

a) Purpose
To get familiar with LMAEnumAttList and LMAEnumratedAttributes objects in LLAMA.

b) Problem Statement

Write a standalone application to retrieve all Select List Data in SPPID from datasource. Display properties, such as
ListName, DependName, DependID. Then loop through all Select List Value of each Select List Data, display
properties, such as Name and Index.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objEnum As LMAEnumAttList

Dim objEnums As LMAEnumAttLists

Dim objEnumAttr As LMAEnumeratedAttribute
Dim objEnumAttrs As LMAEnumeratedAttributes

Set objEnums = datasource.CodeL.ists
Debug.Print "Total Select List Data found: " & objEnums.Count

For Each objEnum In objEnums
Debug.Print ™"
Debug.Print "Select List Name =" & objEnum.ListName & Space(40 - Len(objEnum.ListName)) _
& "DependName =" & objEnum.DependName & Space(30 - Len(objEnum.DependName)) _
& "DependID =" & objEnum.DependID
Set objEnumAttrs = objEnum.EnumeratedAttributes
For Each objEnumAttr In objEnumALttrs
Debug.Print "Name =" & objEnumAttr.name & Space(65 - Len(objEnumAttr.name)) _
& "Index =" & objEnumAttr.Index
Next
Next

Set datasource = Nothing
Set objEnum = Nothing

Set objEnums = Nothing

Set objEnumAttr = Nothing
Set objEnumAttrs = Nothing

32 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

17. CREATE FILTER WITH SELECT LIST DATA IN CRITERIA

a) Purpose
To create a filter with select list data in criteria, learn how to resolve the select data to its index dynamically.

b) Problem Statement

Place couple piping valves in drawing. Write a standalone application to collect all Ball VValves.

c) Solution

¢ Example code
Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter
Dim criterion As LMACriterion

Set criterion = New LMACriterion
Set objFilter = New LMAFilter

criterion.SourceAttributeName = "PipingCompType"

criterion.ValueAttribute = datasource.CodeL.ist("Piping Component
Type").EnumeratedAttributes.Getltemindex("Ball valve")

criterion.Operator = "'="

objFilter.ItemType = "PipingComp"

objFilter.Criteria.Add criterion

Dim PipingComp As LMPipingComp

Dim PipingComps As LMPipingComps

Set PipingComps = New LMPipingComps
PipingComps.Collect datasource, Filter:=objFilter

Debug.Print "Number of Ball Valves retrieved = " & PipingComps.Count

Set datasource = Nothing
Set objFilter = Nothing

Set criterion = Nothing

Set PipingComp = Nothing
Set PipingComps = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 33

18. READ HISTORY PROPERTY OF MODELITEM

a) Purpose
To read the history data belongs to a modelitem.

b) Problem Statement

Place a Vessel. Write a standalone application to read the history data belongs to this Vessel.

c) Solution

¢ Example code
Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objModelltem As LMModelltem
Set objModelltem = datasource.GetModelltem(CONST_SPID_Modelltem)

Dim objHistory As LMHistory

Dim objHistories As LMHistories

Dim objAttribute As LMAALtribute

Set objHistories = objModelltem.Histories

Debug.Print objHistories.Count

For Each objHistory In objHistories
For Each objAttribute In objHistory.Attributes
Debug.Print "Name: " & objAttribute.name & Space(20 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next
Next

Set datasource = Nothing
Set objModelltem = Nothing
Set objHistory = Nothing
Set objHistories = Nothing
Set objAttribute = Nothing

34 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

109. READ STATUS PROPERTY OF MODELITEM

a) Purpose
To read the Status datas belongs to a modelitem

b) Problem Statement

Place a Vessel with some Status data populated. Write a standalone application to read the status data belongs to this
Vessel.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objModelltem As LMModelltem
Set objModelltem = datasource.GetModelltem(CONST_SPID_Maodelltem)

Dim objStatus As LMStatus
Dim objStatuses As LMStatuses
Set objStatuses = objModelltem.Statuses

Debug.Print objStatuses.Count

Dim objAttribute As LMAALtribute
For Each objStatus In objStatuses
For Each objAttribute In objStatus.Attributes
Debug.Print "Name: " & objAttribute.name & Space(20 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next
Next

Set datasource = Nothing
Set objModelltem = Nothing
Set objStatus = Nothing

Set objStatuses = Nothing
Set objAttribute = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 35

20. ReaAD CASE PROPERTY OF MODELITEM

a) Purpose
To read Case data of a modelitem

b) Problem Statement

Place a Vessel with some Case data populated. Write a standalone application to read the case data belongs to this
Vessel.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objModelltem As LMModelltem
Set objModelltem = datasource.GetModelltem(CONST_SPID_Modelltem)

Dim objCase As LMCase

Dim objCases As LMCases

Set objCases = objModelltem.Cases
Debug.Print objCases.Count

Dim objAttribute As LMAALtribute
Dim objCaseProcess As LMCaseProcess
Dim objCaseControl As LMCaseControl
For Each objCase In objCases
For Each objAttribute In objCase.Attributes
Debug.Print "Name: " & objAttribute.name & Space(30 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next
Debug.Print objCase.CaseProcesses.Count
For Each objCaseProcess In objCase.CaseProcesses
For Each objAttribute In objCaseProcess.Attributes
Debug.Print "Name: " & objAttribute.name & Space(30 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next
Next
Debug.Print objCase.CaseControls.Count
For Each objCaseControl In objCase.CaseControls
For Each objAttribute In objCaseControl.Attributes
Debug.Print "Name: " & objAttribute.name & Space(20 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next
Next
Next

36 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

Set datasource = Nothing

Set objModelltem = Nothing
Set objCase = Nothing

Set objCases = Nothing

Set objAttribute = Nothing
Set objCaseProcess = Nothing
Set objCaseControl = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 37

21. Access ITEMNOTE

a) Purpose
To access an ItemNote.

b) Problem Statement

Place an ItemNote. Write a standalone application to read the properties of this ItemNote.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objltemNote As LMItemNote
Set objltemNote = datasource.GetltemNote(CONST_SPID_ItemNote)

Dim objAttribute As LMAALtribute
For Each objAttribute In objltemNote.Attributes
Debug.Print "Name: " & objAttribute.name & Space(40 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next

Dim objNote As LMNote
Debug.Print objltemNote.Notes.Count

For Each objNote In objltemNote.Notes
For Each objAttribute In objNote.Attributes
Debug.Print "Name: " & objAttribute.name & Space(40 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next
Next

Set datasource = Nothing
Set objltemNote = Nothing
Set objNote = Nothing

Set objAttribute = Nothing

38 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

22. Access OPC

a) Purpose
To access an OPC

b) Problem Statement

Place an OPC and its PairOPC in another drawing. Write a standalone application to read the properties of this OPC
and its PairOPC.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objOPC As LMOPC
Set 0bjOPC = datasource.GetOPC(CONST_SPID_OPC)

Dim objAttribute As LMAALtribute
For Each objAttribute In objOPC.Attributes
Debug.Print "Name: " & objAttribute.name & Space(20 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next

Dim objPairOPC As LMOPC
Set objPairOPC = objOPC.pairedWithOPCObject

For Each objAttribute In objPairOPC.Attributes
Debug.Print "Name: " & objAttribute.name & Space(20 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next

Set datasource = Nothing
Set objOPC = Nothing

Set objPairOPC = Nothing
Set objAttribute = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 39

23. FILTER FOR HISTORIES

a) Purpose
To filter for histories by TimeStamp and ItemType
b) Problem Statement

Set the active plant with some items placed. Write a standalone application to filter Histories.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter
Set objFilter = New LMAFilter

objFilter.Criteria. AddNew ("FirstOne")
objFilter.Criteria.item("FirstOne").SourceAttributeName = "TimeStamp"
objFilter.Criteria.item("FirstOne™).ValueAttribute = "7/19/04 8:00:00 AM"
objFilter.Criteria.item("FirstOne™).Operator = ">"

objFilter.ItemType = "History"

objFilter.Criteria. AddNew (*"SecondOne")
objFilter.Criteria.item("SecondOne™).SourceAttributeName = "Modelltem.ModelltemType"
objFilter.Criteria.item("SecondOne™).ValueAttribute = 29 '29 is the index for 'Plant Item'
objFilter.Criteria.item("SecondOne™).Operator = "="
objFilter.Criteria.item("SecondOne™).Conjunctive = True

Dim objHistories As LMHistories

Set objHistories = New LMHistories
objHistories.Collect datasource, Filter:=objFilter
Debug.Print objHistories.Count

Dim objHistory As LMHistory

For Each objHistory In objHistories

Debug.Print objHistory.Attributes(" TimeStamp").Value

Debug.Print objHistory.ModelltemObject.Attributes("ModelltemType™).Value
Next

Set datasource = Nothing
Set objFilter = Nothing
Set objHistories = Nothing
Set objHistory = Nothing

40 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

24. CHANGE PROPERTIS AT DIFFERNET OBJECT LEVELS

a)

Purpose

To access “Name” property at different object level.

b)

Problem Statement

Place a vessel. Write a standalone application to change “Name” property at Equipment object level, and see how
it changes the output for Vessel object

c)

1.

2.

Solution

Use LMADataSource.GetVessel and LMADataSource.GetEquipment methods to obtain object Vessel
and Equipment with same SP_ID

Change property “Name” value of Equipment object, then obtain Vessel object again to see how it
changes the property “Name” value of Vessel

Example code
Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then
Set datasource = New LMADataSource
Else
Set datasource = PIDDataSource
End If
datasource.BeginTransaction
Dim objVessel As LMVessel
Dim objEquipment As LMEquipment
Set objVessel = datasource.GetVessel CONST_SPID_Vessel)
Set objEquipment = datasource.GetEquipment(CONST_SPID_Vessel)

Dim objAttr As LMAAttribute
Debug.Print "Total attributes for Vessel: " & objVessel.Attributes.Count
For Each objAttr In objVessel.Attributes
Debug.Print "Attribute Name : Value " & objAttr.name & " : " & objAttr.Value
Next

Debug.Print "Total attributes for Equipment: " & objEquipment.Attributes.Count
For Each objAttr In objEquipment.Attributes

Debug.Print "Attribute Name : Value " & objAttr.name & " : " & objAttr.Value
Next

Debug.Print objEquipment.name

Debug.Print objVessel.name
objEquipment.Attributes("Name™).Value = "Lab-12"
objEquipment.Commit

Set objVessel = datasource.GetVessel(CONST_SPID_Vessel)
Debug.Print objEquipment.name

Debug.Print objVessel.name

datasource.CommitTransaction
Set datasource = Nothing

Set objVessel = Nothing

Set objEquipment = Nothing
Set objAttr = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 41

25. ReEaAD CASEPROPERTY OF VESSEL

a) Purpose

To access case properties of Vessel.

b) Problem Statement

Place a vessel. Populate the some case property value of the vessel. Write a standalone application to access the case
and caseprocess of the vessel and read properties of the case.

c) Solution
1. Dim LMVessel
2. Vessel is associated several LMCases, if Case Class is Case Process, then this Case can have two

CaseProcesses associated with it, depends on Quality, which can be Maximun or Minimum, then a
one to one filtered relationship is found for the Vessel and Case property

Example code

Dim datasource As LMADataSource

If Not binUsePIDDatasource Then
Set datasource = New LMADataSource
Else
Set datasource = PIDDataSource
End If
Dim objVessel As LMVessel
Set objVessel = datasource.GetVessel(CONST_SPID_Vessel)

Debug.Print "Design.Min.Pressure = " & objVessel.Attributes("ProcessDesign.Min.Pressure").Value

Set datasource = Nothing
Set objVessel = Nothing

42 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

26. READ FLow DIRECTION OF PIPERUN

Purpose
To obtain Flow Direction of Piperun
b) Problem Statement

Place a Piperun. Write a standalone application to obtain Flow Direction information about the Piperun.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then
Set datasource = New LMADataSource
Else
Set datasource = PIDDataSource
End If
Dim objPiperun As LMPipeRun
Set objPiperun = datasource.GetPipeRun(CONST_SPID_PipeRun)

Debug.Print "Flow Direction =" & objPiperun.Attributes("FlowDirection™).Value

Set datasource = Nothing
Set objPiperun = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 43

27. ACCESS PIPING POINT

a) Purpose
To access a Piping Point.

b) Problem Statement

Place a Valve. Write a standalone application to access PipingPoint belongs to this Valve.
c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objPipingComp As LMPipingComp
Set objPipingComp = datasource.GetPipingComp(CONST_SPID_PipingComp)

Dim objAttribute As LMAALtribute
Dim objPipingPoint As LMPipingPoint
Debug.Print objPipingComp.PipingPoints.Count

For Each objPipingPoint In objPipingComp.PipingPoints
For Each objAttribute In objPipingPoint.Attributes
Debug.Print "Name: " & objAttribute.name & Space(25 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next
Next

Set datasource = Nothing

Set objPipingComp = Nothing
Set objPipingPoint = Nothing
Set objAttribute = Nothing

44 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

28. ACCESS SIGNAL PoINT

a) Purpose
To access a Signal Point.

b) Problem Statement

Place an offline Instrument. Write a standalone application to access PipingPoint belongs to this offline Instrument.
c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objlnstrument As LMInstrument
Set objInstrument = datasource.GetInstrument(CONST_SPID_Offlinelnstrument)

Dim objAttribute As LMAALtribute
Dim objSignalPoint As LMSignalPoint
Debug.Print objInstrument.SignalPoints.Count

For Each objSignalPoint In objlnstrument.SignalPoints
For Each objAttribute In objSignalPoint. Attributes
Debug.Print "Name: " & objAttribute.name & Space(20 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next
Next

Set datasource = Nothing

Set objInstrument = Nothing
Set objSignalPoint = Nothing
Set objAttribute = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 45

29. IMPLIEDITEM

a) Purpose
To navigate the relationship between Implied item and its parent item.

b) Problem Statement

Place a Instrument off-line with implied item. Write a standalone application to obtain any items in the database that
are Implied Item

c) Solution

1. Dim LMPlantitem, LMACriterion and LMAFilter
2. Implied item would have property “PartOfType” is equal to “Implied”, which has the index number is 2.

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter

Dim criterion As LMACtiterion
Set criterion = New LMACriterion
Set objFilter = New LMAFilter

criterion.SourceAttributeName = "PartOfType"
criterion.ValueAttribute = "2" 'implied item

criterion.Operator = "=
objFilter.ItemType = "Plantltem"

objFilter.Criteria.Add criterion

Dim objPlantitem As LMPIlantltem

Dim objPlantltems As LMPIlantltems

Set objPlantltems = New LMPlantltems

objPlantltems.Collect datasource, Filter:=objFilter

Debug.Print "Number of Implied Items retrieved =" & objPlantltems.Count

For Each objPlantltem In objPlantltems

Debug.Print "PartOfType =" & objPlantltem.Attributes("PartOfType").Value

Debug.Print "Parent Item Type =" & objPlantltem.PartOfPlantltemObject. Attributes("ItemTypeName").Value
Next

Set datasource = Nothing
Set objFilter = Nothing

Set criterion = Nothing

Set objPlantltem = Nothing
Set objPlantltems = Nothing

46 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

30. PARTOFPLANTITEM RELATIONSHIPS

a) Purpose
To navigate the relationship between item and its parent item.

b) Problem Statement

Place a Instrument off-line with implied item, two nozzles, two trays, TEMA ends Write a standalone application
to find all the items that have parent item in the database

c) Solution

1. Dim LMPlantitem, LMACriterion and LMAFilter
2. Implied item would have property “SP_PartOfID” is not NULL

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter

Dim criterion As LMACtiterion
Set criterion = New LMACriterion
Set objFilter = New LMAFilter

criterion.SourceAttributeName = "SP_PartOfID"
criterion.ValueAttribute = Null
criterion.Operator = "1="

objFilter.ItemType = "Plantltem"
objFilter.Criteria.Add criterion

Dim objPlantitem As LMPlantltem

Dim objPlantitems As LMPlantltems

Set objPlantltems = New LMPlantltems

objPlantltems.Collect datasource, Filter:=objFilter

Debug.Print "Number of child items retrieved = " & objPlantltems.Count

For Each objPlantltem In objPlantltems

Debug.Print "PartOfType =" & objPlantltem.Attributes("PartOfType").Value

Debug.Print "Parent Item Type =" & objPlantltem.PartOfPlantltemObject. Attributes("ItemTypeName").Value
Next

Set datasource = Nothing
Set objFilter = Nothing

Set criterion = Nothing

Set objPlantltem = Nothing
Set objPlantltems = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 47

31. ACCESS INSTRUMENT LOOP

a) Purpose
To get familiar with relationship between PlantltemGroup and Plantltem

c) Problem Statement

Use LMAFilter to search for Instrument Loops, then check how many Plantltems are associated with the Instrument
Loop. At the end, try to associate an Instrument with this Instrument Loop.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter

Dim criterion As LMACtiterion
Set criterion = New LMACriterion
Set objFilter = New LMAFilter

criterion.SourceAttributeName = "ltemTag"
criterion.ValueAttribute = "L-101L"

criterion.Operator = "=

objFilter.ItemType = "InstrLoop™
objFilter.Criteria.Add criterion

Dim objlnstrLoops As LMInstrLoops
Dim objlnstrLoop As LMInstrLoop
Set objlInstrLoops = New LMInstrLoops
objlInstrLoops.Collect datasource, Filter:=objFilter 'get InstrLoop by filter
If objInstrLoops.Count > 0 Then
Set objlInstrLoop = objlnstrLoops.Nth(1)
Else

Set datasource = Nothing
Set objFilter = Nothing
Set criterion = Nothing
Set objlInstrLoop = Nothing
Set objlInstrLoops = Nothing
Exit Sub

End If

Dim objPlantitem As LMPlantltem
Dim objPlantltems As LMPlantltems
Set objPlantltems = objInstrLoop.Plantltems

48 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

Debug.Print "Number of plant items in the InstrLoop =" & objPlantltems.Count

‘print plantitems in the instrument loop

Dim i As Integer

i=1

For Each objPlantltem In objPlantltems
Debug.Print "ItemTypeName No. " & i & " " & objPlantltem.ltemTypeName & " ID =" & objPlantltem.ID
i=i+l

Next

‘add an instrument to the instrument loop

Dim objlnstr As LMInstrument

Set objInstr = datasource.GetInstrument(CONST_SPID_Offlinelnstrument)

Debug.Print "Number of PlantltemGroups that are associated with this instrument=" &
objInstr.PlantitemGroups.Count

objlnstr.PlantitemGroups.Add objlnstrLoop.AsLMPIlantitemGroup

‘objInstr.Commit

Debug.Print "Number of PlantltemGroups that are associated with this instrument=" &
objInstr.PlantitemGroups.Count

Set datasource = Nothing
Set objFilter = Nothing

Set criterion = Nothing

Set objInstrLoops = Nothing
Set objinstrLoop = Nothing
Set objPlantltems = Nothing
Set objPlantltem = Nothing
Set objInstr = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 49

32. LOADINSTRUMENTS

a) Purpose
To navigate the relationship between Instrloop and Instrument through Loadlnstruments method.

b) Problem Statement

Place couple instrloops, and couple instruments, then make association between them. Write a standalone
application to find instruments associated with instrloops through LoadInstruments method.

c) Solution

¢ Example code

Dim datasource As LMADataSource
Dim objlnstrLoops As LMInstrLoops
Dim objlnstrLoop As LMInstrLoop
Dim objlInstruments As LMInstruments
Dim objlnstrument As LMInstrument

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Set objlInstrLoops = New LMInstrLoops
objlnstrLoops.Collect datasource

Debug.Print objInstrLoops.Count
Set objlInstruments = objlnstrLoops.Loadlnstruments
Debug.Print objInstruments.Count

For Each objlnstrument In objlnstruments

Debug.Print objInstrument.Attributes("ItemTag").Value

Debug.Print objInstrument.PlantltemGroups.Nth(1).Attributes("ItemTag")
Next

For Each objlnstrLoop In objInstrLoops
Debug.Print objInstrLoop.Attributes("ItemTag").Value
If Not objinstrLoop.Instruments Is Nothing Then
Debug.Print objInstrLoop.Instruments.Count
End If
Next

Set objlInstrLoops = Nothing
Set objlInstrLoop = Nothing
Set objlInstruments = Nothing
Set objlnstrument = Nothing
Set datasource = Nothing

50 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

33. IDENTIFY NOZZLE AND EQUIPMENT

a) Purpose
To access nozzles on a vessel by navigating the relationship between nozzles and vessels.

b) Problem Statement

Place a vessel. Place two different nozzles on the vessel. Write a standalone application to retrieve the following
properties of the nozzle:
SP_ID, aabbcc code, 1D of equipment that the nozzle is connected to, Flowdirection, Nozzle type.

c) Solution

1. Obtain Vessel object by SP_ID
2. Use LMAVessel.nozzles to get a collection of nozzle belong to this Vessel

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim vessel As LMVessel
Set vessel = datasource.GetVessel(CONST_SPID_Vessel)

Dim nozzles As LMNozzles
Set nozzles = vessel.nozzles

Debug.Print nozzles.Count
Dim nozzle As LMNozzle

For Each nozzle In nozzles
Debug.Print "Nozzle ID =" & nozzle.ID
Debug.Print "Nozzle's aabbcc code =" & nozzle.Attributes("aabbcc_code™).Value
Debug.Print "ID of equipment that the nozzle is connected to = & nozzle.EquipmentID
Debug.Print "Nozzle's flow direction =" & nozzle.Attributes("FlowDirection™).Value

Debug.Print "Nozzle type =" & nozzle.Attributes("NozzleType").Value
Debug.Print
Next

Set datasource = Nothing
Set vessel = Nothing

Set nozzles = Nothing
Set nozzle = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 51

34. PIPINGCOMP AND INLINECOMP

a) Purpose
To navigate the relationship between PipingComp and InlineComp.

b) Problem Statement

Place a Valve. Write a standalone application to navigate from pipingcomp to piperun and from piperun to
pipingcomp through InlineComp.

c) Solution

1. Use LMADataSource.GetPipingComp
2. Loop LMPipingComp.InlineComps
3. Use LMinlinecomp.PipeRunObject

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objPipingComp As LMPipingComp
Dim objPiperun As LMPipeRun
Dim objInlineComp As LMInlineComp

Set objPipingComp = datasource.GetPipingComp(CONST_SPID_PipingComp)

If objPipingComp.InlineComps.Count = 1 Then
Set objPiperun = objPipingComp.InlineComps.Nth(1).PipeRunObject

Debug.Print "PipeRun ItemTag: " & objPiperun.Attributes("lItemTag").Value

For Each objinlineComp In objPiperun.InlineComps
Set objPipingComp = Nothing
Set objPipingComp = objInlineComp.PipingCompObject
If Not objPipingComp Is Nothing Then

Debug.Print "PipingComp Type: " & objPipingComp.Attributes("PipingCompType").Value

End If

Next

End If

Set datasource = Nothing
Set objPipingComp = Nothing
Set objPiperun = Nothing
Set objInlineComp = Nothing

52 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

35. INSTURMENT AND INLINECOMP

a) Purpose
To navigate the relationship between Inline-Instrument and InlineComp.

b) Problem Statement

Place a Instrument Valve. Write a standalone application to navigate from inline-instrument to piperun and from
piperun to inline-instrument through inlinecomp.

c) Solution

1. Use LMADataSource.GetInstrument
2. Loop LMinstrument.InlineComps
3. Use LMinlinecomp.InstrumentObject

¢ Example code
‘be aware of that only inline instrument associate with InlineComp object.

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objlnstrument As LMInstrument
Dim objPiperun As LMPipeRun
Dim objInlineComp As LMInlineComp

Set objInstrument = datasource.GetInstrument(CONST_SPID_Inlinelnstrument)

If objInstrument.Attributes("IsInline™).Value = True Then
Set objPiperun = objlnstrument.InlineComps.Nth(1).PipeRunObject

Debug.Print "PipeRun ItemTag: " & objPiperun.Attributes("ltemTag").Value

For Each objinlineComp In objPiperun.InlineComps
Set objInstrument = Nothing
Set objlInstrument = objInlineComp.InstrumentObject
If Not objInstrument Is Nothing Then

Debug.Print "Instrument Type: " & objlnstrument.Attributes(" InstrumentType").Value

End If

Next

End If

Set datasource = Nothing
Set objInstrument = Nothing
Set objInlineComp = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 53

36. OFFLINE INSTRUMENT AND SIGNALRUN

a) Purpose
Explore the relationship between offline instrument and SignalRun.

b) Problem Statement

Place an offline instrument, and then place couple singalruns connected with it. Write a standalone application to
navigate from offline-instrument to signalrun.

c) Solution

¢ Example code
Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objlnstrument As LMInstrument
Dim objSignalRun As LMSignalRun

Set objlInstrument = datasource.GetInstrument(CONST_SPID_Offlinelnstrument)
Set objSignalRun = objlnstrument.SignalRunObject
Debug.Print objSignalRun.Attributes("Signal Type™).Value

Debug.Print objSignalRun.Instruments.Count
For Each objlnstrument In objSignalRun.Instruments

Debug.Print objInstrument.Attributes(*InstrumentType").Value
Next

Set datasource = Nothing
Set objInstrument = Nothing
Set objSignalRun = Nothing

54 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

37. ACCESS INSTRUMETN FUNCTIONS

a) Purpose
Explore the relationship between instrument and its functions

b) Problem Statement

Place an instrument, and populate properties for its functions. Write a standalone application to access instrument
functions.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objlInstrument As LMInstrument

Dim objlnstrFailMode As LMInstrFailMode
Dim objlnstrFunction As LMInstrFunction
Dim objlnstrOption As LMInstrFunction
Dim objAttribute As LMAALtribute

Set objInstrument = datasource.GetInstrument(CONST_SPID_Offlinelnstrument)
Debug.Print objInstrument.InstrFailModes.Count
For Each objlnstrFailMode In objInstrument.InstrFailModes

For Each objAttribute In objlInstrFailMode.Attributes

Debug.Print "Attribute Name=" & objAttribute.name & Space(50 - Len(objAttribute.name)) & " Value=" &
objAttribute.Value

Next

Next

Debug.Print objlnstrument.InstrFunctions.Count
For Each objlInstrFunction In objInstrument.InstrFunctions
For Each objAttribute In objlnstrFunction.Attributes
Debug.Print "Attribute Name=" & objAttribute.name & Space(50 - Len(objAttribute.name)) & " Value=" &
objAttribute.Value
Next
Next

Debug.Print objInstrument.InstrOptions.Count
For Each objlnstrOption In objlInstrument.InstrOptions
For Each objAttribute In objlnstrOption.Attributes
Debug.Print "Attribute Name=" & objAttribute.name & Space(50 - Len(objAttribute.name)) & " Value=" &
objAttribute.Value
Next
Next

Set datasource = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 55

Set objInstrument = Nothing
Set objInstrFailMode = Nothing
Set objInstrFunction = Nothing
Set objInstrOption = Nothing
Set objAttribute = Nothing

56 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

38. IDENTIFY CONNECTORS OF A PIPERUN

Purpose

To traverse the relationships from the Model DataModel to the Drawing DataModel

b) Problem Statement

Place a piperun between two nozzles and place two valves on it. Populate the IltemTag of the piperun with a value
(eg. 1100P). Retrieve the piperun by filtering for the piperun’s ItemTag and locate all of its representations and
connector representations.

c) Solution

1. Dim LMPipeRun, LMConnector, LMRepresentation
2. LMConnector is subclass of LMRepresentation, and its RepresentationType is “Connector”.

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter

Dim criterion As LMACriterion

Set criterion = New LMACriterion

Set objFilter = New LMAFilter
criterion.SourceAttributeName = "ltemTag"
criterion.ValueAttribute = "1100P"
criterion.Operator = "'="
objFilter.ItemType = "PipeRun"
objFilter.Criteria.Add criterion

Dim piperun As LMPipeRun

Dim piperuns As LMPipeRuns

Set piperuns = New LMPipeRuns
piperuns.Collect datasource, Filter:=objFilter

Dim connector As LMConnector
Dim representation As LMRepresentation

For Each piperun In piperuns
For Each representation In piperun.Representations
If representation.RepresentationType = "Connector” Then
Set connector = datasource.GetConnector(representation.1D)
Debug.Print connector. Attributes("ItemStatus™).Value
Debug.Print "Model itme type = " & connector.ModelltemObject.Attributes("ltemTypeName").Value
End If
Next
Next

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 57

Set datasource = Nothing
Set objFilter = Nothing

Set criterion = Nothing

Set piperuns = Nothing

Set piperun = Nothing

Set connector = Nothing

Set representation = Nothing

58 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

39. FIND FILE NMAE OF A SYMBOL

a) Purpose
Find file name of a symbol

b) Problem Statement

Place a vessel, then navigate from vessel to symbol, and get the file name of the vessel from the symbol object.

c) Solution

¢ Example code
Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objVessel As LMVessel
Dim objSymbol As LMSymbol

Set objVessel = datasource.GetVessel CONST_SPID_Vessel)
Set objSymbol = datasource.GetSymbol(objVessel.Representations.Nth(1).1D)
Debug.Print objSymbol.Attributes("FileName").Value

'if you are required to find file name of a piperun, what should you do?
Set datasource = Nothing

Set objVessel = Nothing

Set objSymbol = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 59

40. FIND X, Y COORDINATES OF SYMBOL

a) Purpose
Find X, Y Coordinates of symbol
b) Problem Statement

Place a vessel, then navigate from vessel to symbol, and get the X, Y Coordinates of the vessel from the symbol
object.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objVessel As LMVessel
Dim objSymbol As LMSymbol

Set objVessel = datasource.GetVessel CONST_SPID_Vessel)

Set objSymbol = datasource.GetSymbol(objVessel.Representations.Nth(1).1D)
Debug.Print "XCoordinate = " & objSymbol.Attributes("XCoordinate™).Value
Debug.Print "YCoordinate = " & objSymbol.Attributes("Y Coordinate™).Value

Set datasource = Nothing

60 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

41. FIND X, Y COORDINATES OF PIPERUN

a) Purpose
Find X, Y Coordinates of Piperun
b) Problem Statement

Place a Piperun, then navigate from Piperun to Connector, and get the X, Y Coordinates of the Piperun from
Connector object.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objPiperun As LMPipeRun

Dim objRep As LMRepresentation

Dim objConnector As LMConnector

Dim objConnectorVertex As LMConnectorVertex
Dim objSymbol As LMSymbol

Set objPiperun = datasource.GetPipeRun(CONST_SPID_PipeRun)

For Each objRep In objPiperun.Representations
If objRep.Attributes("RepresentationType").Value = "Connector” And objRep.Attributes("ItemStatus™).Value
="Active" Then
Set objConnector = datasource.GetConnector(objRep.ID)
For Each objConnectorVertex In objConnector.ConnectorVertices
Debug.Print "XCoordinate = " & objConnectorVertex.Attributes("XCoordinate™).Value
Debug.Print "YCoordinate = " & objConnectorVertex.Attributes("'Y Coordinate™).Value
Next
End If
Next

'if the X, Y Coordinates are on the symbol that is connected with the Connector, what should you do?
Set datasource = Nothing

Set objPiperun = Nothing

Set objRep = Nothing

Set objConnector = Nothing

Set objConnectorVertex = Nothing

Set objSymbol = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 61

42. FIND LABELS OF A SYMBOL

a) Purpose
Find labels on a symbol

b) Problem Statement

Place a vessel, then place couple labels on it, then navigate from Vessel to Representation, then find labels on the
Vessel.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objVessel As LMVessel

Dim objSymbol As LMSymbol

Dim objLabelPersist As LMLabelPersist
Dim objAttr As LMAAttribute

Dim objLeaderVertex As LMLeaderVertex

Set objVessel = datasource.GetVessel CONST_SPID_Vessel)
Set objSymbol = datasource.GetSymbol(objVessel.Representations.Nth(1).1D)

Debug.Print "Total labels on this symbol: " & objSymbol.LabelPersists.Count

For Each objLabelPersist In objSymbol.LabelPersists
For Each objAttr In objLabelPersist.Attributes
Debug.Print "Attribute Name=" & objAttr.name & Space(50 - Len(objAttr.name)) & " Value=" &
objAttr.Value
Next
For Each objLeaderVertex In objLabelPersist.LeaderVertices
Debug.Print "XCoordinate = " & objLeaderVertex.Attributes("XCoordinate™).Value
Debug.Print "YCoordinate = " & objLeaderVertex.Attributes("'Y Coordinate™).Value
Next
Next

'if you are required to find labels of a piperun, what should you do?
Set datasource = Nothing

Set objVessel = Nothing

Set objSymbol = Nothing

Set objLabelPersist = Nothing

Set objAttr = Nothing

Set objLeaderVertex = Nothing

62 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

43. FIND PARENT REPRESENTATION OF A LABEL

a) Purpose

Find Parent Representation of a label.

b) Problem Statement

Place a label on to a vessel, get label object first, then navigate from label to find Representation it labels, then
navigate from the Representation to Modelltem.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then
Set datasource = New LMADataSource

Else

Set datasource = PIDDataSource

End If

Dim objLabelPersist As LMLabelPersist
Dim objRep As LMRepresentation

Dim objModelltem As LMModelltem
Dim objAttr As LMAAttribute

Set objLabelPersist = datasource.GetLabelPersist(CONST_SPID_LabelPersist)
Set objRep = objLabelPersist.RepresentationObject

Set objModelltem = objRep.

ModelltemObiject

Debug.Print "Total labels on this symbol: " & objRep.LabelPersists.Count

For Each objAttr In objModelltem.Attributes
Debug.Print "Attribute Name=" & objAttr.name & Space(50 - Len(objAttr.name)) & " Value=" &

objAttr.Value
Next

'if parent is piperun, what should you do?

Set datasource = Nothing

Set objLabelPersist = Nothing

Set objRep = Nothing

Set objModelltem = Nothing

Set objAttr = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 63

44. FIND PARENT DRAWING FOR A SYMBOL

a) Purpose
Find parent drawing of a symbol.
b) Problem Statement

Place a vessel on a drawing. Write a standalone application to find drawing this vessel is on.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objVessel As LMVessel
Dim objSymbol As LMSymbol

Set objVessel = datasource.GetVessel CONST_SPID_Vessel)
Set objSymbol = datasource.GetSymbol(objVessel.Representations.Nth(1).1D)

Dim objDrawing As LMDrawing
Set objDrawing = objSymbol.DrawingObject
Debug.Print objDrawing.Attributes("Name").Value

Set datasource = Nothing
Set objVessel = Nothing
Set objSymbol = Nothing
Set objDrawing = Nothing

64 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

45. FIND ACTIVE DRAWING AND PLANTITEMS IN IT

a) Purpose

Directly find the active drawing not through an item first, then find all Plantltems in it.

Problem Statement

Open a drawing. Write a standalone application to find what active drawing is and how many Plantltems in it.

c) Solution

¢ Example code

Dim datasource As LMADataSource

'have to user PIDDatasource
Set datasource = PIDDataSource

Dim objDrawing As LMDrawing
Set objDrawing = datasource.GetDrawing(datasource.PIDMgr.Drawing.ID)
Debug.Print objDrawing.Attributes(*Name™).Value

Dim objFilter As LMAFilter
Set objFilter = New LMAFilter

objFilter.Criteria. AddNew ("FirstOne")
objFilter.Criteria.item("FirstOne™).SourceAttributeName = "Representation.Drawing.Name
objFilter.Criteria.item("FirstOne™).ValueAttribute = objDrawing.Attributes("Name").Value
objFilter.Criteria.item("FirstOne™).Operator = "="

objFilter.ItemType = "Plantltem"

objFilter.Criteria. AddNew ("SecondOne")
objFilter.Criteria.item("SecondOne™).SourceAttributeName = "ItemStatus™
objFilter.Criteria.item("SecondOne™).ValueAttribute = 1
objFilter.Criteria.item("SecondOne™).Operator = "="
objFilter.Criteria.item("SecondOne™).Conjunctive = True

Dim objPlantltems As LMPIlantltems
Set objPlantltems = New LMPlantltems
objPlantltems.Collect datasource, Filter:=objFilter

Debug.Print "Number of plantitems in active drawing: " & objPlantltems.Count

Set datasource = Nothing
Set objDrawing = Nothing
Set objFilter = Nothing

Set objPlantltems = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 65

46. FILTER FOR ITEMS IN PLANT STOCKPILE

a) Purpose
To filter for all items in plant stockpile.

b) Problem Statement

Write a standalone application to get all items in plant stockpile.

c) Solution

¢ Example code

Dim datasource As LMADataSource
If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If
Dim objFilter As LMAFilter
Set objFilter = New LMAFilter
objFilter.Criteria. AddNew ("FirstOne")
objFilter.Criteria.item("FirstOne™).SourceAttributeName = "IltemStatus™
objFilter.Criteria.item("FirstOne™).ValueAttribute = 1
objFilter.Criteria.item("FirstOne™).Operator = "="
objFilter.ItemType = "Vessel"

objFilter.Criteria. AddNew (*"SecondOne")
objFilter.Criteria.item("SecondOne™).SourceAttributeName = "Representation.InStockpile”
objFilter.Criteria.item("SecondOne™).ValueAttribute = 2 '2 is index stands for True

objFilter.Criteria.item("SecondOne™).Operator = "=
objFilter.Criteria.item("SecondOne™).Conjunctive = True

objFilter.Criteria. AddNew ("ThirdOne")
objFilter.Criteria.item("ThirdOne").Source AttributeName = "Representation.SP_Drawingld"
objFilter.Criteria.item("ThirdOne").ValueAttribute = 0 '0 stands Plant Stockpile
objFilter.Criteria.item("ThirdOne").Operator = "'="
objFilter.Criteria.item("ThirdOne").Conjunctive = True

Dim objVessels As LMVessels
Set objVessels = New LMVessels
objVessels.Collect datasource, Filter:=objFilter

Debug.Print objVessels.Count

Dim objVessel As LMVessel
For Each objVessel In objVessels

Debug.Print objVessel. Attributes("ItemTag").Value

Debug.Print objVessel.Representations.Nth(1).Attributes("InStockpile™).Value
Next

Set datasource = Nothing
Set objFilter = Nothing
Set objVessels = Nothing
Set objVessel = Nothing

66 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

47. IDENTIFY ITEMS CONNECTED TO A PIPERUN

Purpose

To traverse the relationships from LMConnector to LMSymbol

b) Problem Statement

Place a piperun between two nozzles and place two valves on it. Populate the IltemTag of the piperun with a value
(eg. unit1100-GCD). Retrieve the piperun by filtering for the piperun’s ItemTag. Identify all of the items connected
to the ends of the connectors of the piperun.

c) Solution

1. Dim LMPipeRun, LMConnector, LMRepresentation
2. LMConnector has properties “ConnectItemlSymbolObject” and

“ConnectItem2SymbolObject”, that returns the symbol object connected to the
Connector

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter
Dim criterion As LMACriterion

Set criterion = New LMACriterion
Set objFilter = New LMAFilter

criterion.SourceAttributeName = "ltemTag"
criterion.ValueAttribute = "01110-GCD"
criterion.Operator = "'="

objFilter.ItemType = "PipeRun"
objFilter.Criteria.Add criterion

Dim piperun As LMPipeRun

Dim piperuns As LMPipeRuns

Set piperuns = New LMPipeRuns
piperuns.Collect datasource, Filter:=objFilter

Dim connector As LMConnector
Dim representation As LMRepresentation
For Each piperun In piperuns
For Each representation In piperun.Representations
If representation.RepresentationType = "Connector" Then
Set connector = datasource.GetConnector(representation.1D)
If Not connector.Connectltem1SymbolObject Is Nothing Then
Debug.Print connector.Connectltem1SymbolObject.ModelltemObject.ltemTypeName _
& " - ID: " & connector.Connectltem1SymbolObject.ModelltemID

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 67

End If
If Not connector.Connectltem2SymbolObject Is Nothing Then
Debug.Print connector.Connectltem2SymbolObject. ModelltemObject.ltemTypeName _
& " - ID: " & connector.Connectltem2SymbolObject.ModelltemID
End If
End If
Next
Next

Set datasource = Nothing
Set objFilter = Nothing

Set criterion = Nothing

Set piperuns = Nothing

Set piperun = Nothing

Set connector = Nothing

Set representation = Nothing

68 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

48. IDENTIFY THE PIPERUN ASSOCIATED WITH THE PIPINGCOMP

a) Purpose

To traverse the relationships from LMPipingComp to LMPipeRun

b) Problem Statement

Place a piperun, then place a valve in the middle of the piperun. Assume you only know the SP_ID of the valve.
Write a standalone application to obtain the PipeRun on which the valve is sitting, then read properties (1D and
Name) of the piperun.

Solution

1. Dim LMPipingComp, LMSymbol, LMPipeRun

2. LMSymbol has a property “ConnectlConnectors”, that returns the collection of
LMConnector object connected to the Symbol, then from
LMConnector.ModelItemID, returns the ModelItemID of the Connector, which is
the SP_ID of the PipeRun.

3. Alternate, LMPipingComp has method “InlineComps”, which returns the collection of LMInlineComps
associated with the PipingComp, then, LMInlineComp has a property “PipeRunID”, which returns the
SP_ID of the PipeRun, on which the PipingComp is sitting.

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objPipingComp As LMPipingComp
Set objPipingComp = datasource.GetPipingComp(CONST_SPID_PipingComp)

Dim objPipingCompSym As LMSymbol
Set objPipingCompSym = datasource.GetSymbol(objPipingComp.Representations.Nth(1).1D)

Dim objPiperun As LMPipeRun

Set objPiperun = datasource.GetPipeRun(objPipingCompSym.Connect1Connectors.Nth(1).ModelltemID)
'or you can obtain PipeRun as following

'Set objPipeRun = 'datasource.GetPipeRun(objPipingComp.inlinecomps.Nth(1).PipeRuniD)

Debug.Print "PipeRun ID =" & objPiperun.ID

Debug.Print "PipeRun ItemTag =" & objPiperun.Attributes("ltemTag").Value

'Note they are the same item

Debug.Print "PipingComp ID =" & objPipingComp.ID

Debug.Print “InlineComp ID =" & objPiperun.InlineComps.Nth(1).1D

Set datasource = Nothing

Set objPipingComp = Nothing

Set objPipingCompSym = Nothing
Set objPiperun = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 69

49.

Purpose

To navigate items such as PipeRun, Connectors, nozzles, to get the parent item of nozzle — Equipment.

b) Problem Statement

Place a vessel with a nozzle on it, then place a piperun connected to the nozzle, then place a valve in the piperun.
Write a standalone application to navigate from the piperun, through the piperun’s connectors and the nozzle to
arrive at the vessel. Print out some properties of the vessel.

c) Solution
1. Dim LMAFilter, LMACriterion, LMPipeRuns
2.
returns the LMEquipment object, which is connected to the Nozzle
¢ Example code

70 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

From LMPipeRun.Representations, obtain LMConnector, whose RepresentationType is “Connector”,
then, from LMConnector.Connnectltem1SymbolObject or LMConnector.Connecltem2SymbolObject
find the Symbol object connect to the Connector, then, from LMSymbol.ModelltemID find the SP_ID of
the symbol, then the Nozzle object is located, and LMNozzle has a property “EquipmentObject”, which

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter
Dim criterion As LMACriterion

Set objFilter = New LMAFilter

Set criterion = New LMACriterion
criterion.SourceAttributeName = "ltemTag
criterion.ValueAttribute = "01110-GCD"
criterion.Operator = "=
objFilter.ItemType = "PipeRun"

objFilter.Criteria.Add criterion

Dim piperun As LMPipeRun

Dim piperuns As LMPipeRuns

Set piperuns = New LMPipeRuns
piperuns.Collect datasource, Filter:=objFilter

Debug.Print "Number of Piperuns retrieved = " & piperuns.Count

Dim representation As LMRepresentation
Dim connector As LMConnector

Dim nozzle As LMNozzle

Dim objEquipment As LMEquipment
For Each piperun In piperuns

For Each representation In piperun.Representations

NAVIGATE ITEMS TO GET PARENT ITEM

If representation.RepresentationType = "Connector" Then
Set connector = datasource.GetConnector(representation.ID)
If Not connector.Connectltem1SymbolObject Is Nothing Then
If connector.Connectltem1SymbolObject. ModelltemObject.ItemTypeName = "Nozzle" Then
Set nozzle = datasource.GetNozzle(connector.Connectltem1SymbolObject.ModelltemID)
Exit For
End If
End If
If Not connector.Connectltem2SymbolObject Is Nothing Then
If connector.Connectltem2SymbolObject.ModelltemObject.ItemTypeName = "Nozzle" Then
Set nozzle = datasource.GetNozzle(connector.Connectltem2SymbolObject.ModelltemID)
Exit For
End If
End If
End If
Next
Next

Set objEquipment = nozzle.EquipmentObject

Debug.Print "ID =" & objEquipment.ID

Debug.Print "EquipmentType =" & objEquipment.EquipmentType
Debug.Print "ItemTag = " & objEquipment.Attributes("ItemTag").Value
Debug.Print "Nozzles belong to the vessel =" & objEquipment.nozzles.Count

Set datasource = Nothing
Set objFilter = Nothing

Set criterion = Nothing

Set objEquipment = Nothing
Set nozzle = Nothing

Set connector = Nothing

Set representation = Nothing
Set piperuns = Nothing

Set piperun = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 71

50. NAVIGATE THROUGH BRANCHPOINT

Purpose

To navigate through branch point on a piperun.

b) Problem Statement

Place a vessel with two nozzles on it with ItemTags N10 and N20 respectively. Generate the itemtag for the vessel
by assigning a TagPrefix. Place a straight piperun starting from the nozzle (N10) and end it in space with no
connection. Start a branch piperun from some point on the first piperun, and extend it to the second nozzle (N20).
Write a standalone application to navigate from the first nozzle (N10), through the piperun connectors and the
second nozzle to arrive back at the vessel.

c) Solution

1. Dim LMAFileter, LMACtriterion, LMSymbol, LMPipeRun
2. BranchPoint is a Symbol Representation of the PipeRun on which it is sitting, BranchPoint’s
RepresentationType is “Branch”

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter

Dim criterion As LMACtiterion
Set criterion = New LMACriterion
Set objFilter = New LMAFilter

criterion.SourceAttributeName = "ltemTag"
criterion.ValueAttribute = "N10"
criterion.Operator = "'="

objFilter.ItemType = "Nozzle"
objFilter.Criteria.Add criterion

Dim nozzle As LMNozzle
Dim nozzles As LMNozzles
Set nozzles = New LMNozzles
nozzles.Collect datasource, Filter:=objFilter
'make sure only one nozzle is obtained
If nozzles.Count = 1 Then
Set nozzle = nozzles.Nth(1)
Else

Set datasource = Nothing
Set nozzles = Nothing
Set nozzle = Nothing
Exit Sub

End If

72 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

'get nozzle symbol
Dim symboll As LMSymbol
Set symboll = datasource.GetSymbol(nozzle.Representations.Nth(1).ID)

‘check nozzle symbol's connectlconnectors & connect2connectors information to find a connector
‘connected to the nozzle
Dim Tconnector As LMConnector
Dim connector As LMConnector
If symboll.ConnectlConnectors.Count >= 1 Then
For Each Tconnector In symboll.ConnectlConnectors
If Tconnector.ltemStatus = "Active" Then
If Tconnector.ModelltemObiject.ltemTypeName = "PipeRun" Then
Set connector = Tconnector
End If
End If
Next
End If

If connector Is Nothing And symbol1.Connect2Connectors.Count >= 1 Then
For Each Tconnector In symbol1.Connect2Connectors
If Tconnector.ltemStatus = "Active" Then
If Tconnector.ModelltemObiject.ltemTypeName = "PipeRun" Then
Set connector = Tconnector
End If
End If
Next
End If

‘once the connector is found, check connectitemlsymbolobject and connectitem2symbolobject information
'to find the BranchPoint.
"The modelitem for the BranchPoint symbol is the piperun, but the representationtype is "Branch"
Dim branchsymbol As LMSymbol
If Not connector.Connectltem1SymbolObject Is Nothing Then
If connector.Connectltem1SymbolObject. ModelltemObject.ItemTypeName = "PipeRun" Then
If connector.Connectltem1SymbolObject. AsSLMRepresentation.RepresentationType = "Branch™ Then
Set branchsymbol = connector.Connectltem1SymbolObject
End If
End If
End If
If branchsymbol Is Nothing And Not connector.Connectltem2SymbolObject Is Nothing Then
If connector.Connectltem2SymbolObject. ModelltemObject.ItemTypeName = "PipeRun" Then
If connector.Connectltem2SymbolObject. AsSLMRepresentation.RepresentationType = "Branch™ Then
Set branchsymbol = connector.Connectltem2SymbolObject
End If
End If
End If

'After the BranchPoint is located, use again the connectlconnectors & connect2connectors method to locate
'the connector connected to the BranchPoint, and make sure this connector is point back to the new piperun
Dim connector2 As LMConnector
Dim connector3 As LMConnector
If branchsymbol.Connect1Connectors.Count >= 1 Then
For Each connector2 In branchsymbol.Connect1Connectors
If connector2.ModelltemID <> connector.ModelltemID Then

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 73

Set connector3 = connector2
Exit For
End If
Next
End If

If connector3 Is Nothing And branchsymbol.Connect2Connectors.Count >= 1 Then
For Each connector2 In branchsymbol.Connect2Connectors
If connector2.ModelltemID <> connector.ModelltemID Then
Set connector3 = connector2
Exit For
End If
Next
End If

'After second connector is located, check connectitemlsymbolobject & connectitem2symbolobject to find
'the second nozzle
Dim nozzle2 As LMNozzle
If Not connector3.Connectltem1SymbolObject Is Nothing Then
If connector3.Connectltem1SymbolObject.ModelltemObject.ltemTypeName = "Nozzle" Then
Set nozzle2 = datasource.GetNozzle(connector3.Connectltem1SymbolObject. ModelltemID)
End If
End If
If nozzle2 Is Nothing And Not connector3.Connectltem2SymbolObject Is Nothing Then
If connector3.Connectltem2SymbolObject.ModelltemObject.ltemTypeName = "Nozzle" Then
Set nozzle2 = datasource.GetNozzle(connector3.Connectltem2SymbolObject.ModelltemID)
End If
End If

'Print out two nozzles' name and itmetag of the vessel they attached

Debug.Print "Nozzle2 itemtag = " & nozzle2.Attributes("ItemTag").Value

Debug.Print "Nozzle itemtag = " & nozzle.Attributes("ltemTag").Value

Debug.Print "vessel nozzle2 attached =" & nozzle2.EquipmentObject.Attributes("ItemTag").Value
Debug.Print "vessel nozzle attached =" & nozzle.EquipmentObject.Attributes("ItemTag").Value
Set datasource = Nothing

Set objFilter = Nothing

Set criterion = Nothing

Set nozzle = Nothing

Set nozzles = Nothing

Set nozzle2 = Nothing

Set connector = Nothing

Set connector2 = Nothing

Set connector3 = Nothing

Set branchsymbol = Nothing

74 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

51. NAVIGATE THROUGH OPC

Purpose
To get familiar with navigation through OPC

b) Problem Statement

Place an OPC, then place its pair OPC into another drawing, and connected the pair OPC to a piperun with itemtag
populated. Then write a standalone application to navigate for OPC to its pairOPC, and print out the itemtag of
piperun that the pair OPC is connected with.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter

Dim criterion As LMACriterion

Set criterion = New LMACriterion

Set objFilter = New LMAFilter

criterion.SourceAttributeName = "Representation.Drawing.Name"
criterion.ValueAttribute = "unit2d"”

criterion.Operator = "=
objFilter.ItemType = "OPC"
objFilter.Criteria.Add criterion

Dim objOPC As LMOPC

Dim objOPCs As LMOPCs

Dim objpairOPC As LMOPC

Dim objRep As LMRepresentation
Dim objPiperun As LMPipeRun
Dim objSym As LMSymbol

Dim objConnector As LMConnector

Set objOPCs = New LMOPCs
objOPCs.Collect datasource, Filter:=objFilter

Debug.Print "Total OPCs were found: " & objOPCs.Count

For Each objOPC In objOPCs
Set objpairOPC = objOPC.pairedWithOPCObject
For Each objRep In objpairOPC.Representations
If objRep.DrawinglD >0 Then
Debug.Print "pairOPC is on drawing: " & objRep.DrawingObject.Attributes("Name™).Value
End If

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 75

Set objSym = datasource.GetSymbol(objRep.ID)

For Each objConnector In objSym.Connect1Connectors
Set objPiperun = datasource.GetPipeRun(objConnector.ModelltemID)
Debug.Print "pairOPC is connected to Piperun: " & objPiperun.Attributes("ItemTag").Value

Next

For Each objConnector In objSym.Connect2Connectors
Set objPiperun = datasource.GetPipeRun(objConnector.ModelltemI D)
Debug.Print objPiperun.Attributes("ltemTag").Value

Next

Next
Next

Set datasource = Nothing
Set 0bjOPCs = Nothing

Set 0bjOPC = Nothing

Set objpairOPC = Nothing
Set objRep = Nothing

Set objSym = Nothing

Set objPiperun = Nothing
Set objConnector = Nothing

76 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

52. ACCESS RELATIONSHIP FROM REPRESENTATION

a) Purpose
To access relationship object from representation object.

b) Problem Statement

Place piperun, then place a valve on the piperun. Write a standalone application to obtain the valve, then get the
relationship objects belong to this valve.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objPipingComp As LMPipingComp
Dim objRepresentation As LMRepresentation
Dim objRelationships As LMRelationships
Dim objRelationship As LMRelationship
Dim objAttribute As LMAALtribute

Set objPipingComp = datasource.GetPipingComp(CONST_SPID_PipingComp)
Set objRepresentation = objPipingComp.Representations.Nth(1)
Set objRelationships = objRepresentation.Relation1Relationships
For Each objRelationship In objRelationships
If Not objRelationship.ltem1RepresentationObject Is Nothing Then
Debug.Print objRelationship.ltem1RepresentationObject. ModelltemObject. AsSLMAIltem.ltemType
End If
If Not objRelationship.ltem2RepresentationObject Is Nothing Then
Debug.Print objRelationship.ltem2RepresentationObject. ModelltemObject. AsSLMAIltem.ltemType
End If
For Each objAttribute In objRelationship.Attributes
Debug.Print "Name: " & objAttribute.name & Space(20 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next
Next

Set objRelationships = objRepresentation.Relation2Relationships
For Each objRelationship In objRelationships
If Not objRelationship.ltem1RepresentationObject Is Nothing Then
Debug.Print objRelationship.ltem1RepresentationObject.ModelltemObject. AsSLMAItem.ltemType
End If
If Not objRelationship.ltem2RepresentationObject Is Nothing Then
Debug.Print objRelationship.ltem2RepresentationObject.ModelltemObject. AsSLMAItem.ltemType
End If
For Each objAttribute In objRelationship.Attributes

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 77

Debug.Print "Name: " & objAttribute.name & Space(20 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next
Next

Set datasource = Nothing

Set objPipingComp = Nothing
Set objRepresentation = Nothing
Set objRelationships = Nothing
Set objRelationship = Nothing
Set objAttribute = Nothing

78 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

53. ACCESS INCONSISTENCY

a) Purpose
To access the Inconsistency.

b) Problem Statement

Write a standalone application to get all relationship objects belong to a drawing, then access the Inconsistency from
relationship.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter
Dim criterion As LMACriterion

Set criterion = New LMACtiterion
Set objFilter = New LMAFilter

criterion.SourceAttributeName = "Name"
criterion.ValueAttribute = "Automation1"
criterion.Operator = "'="

objFilter.ItemType = "Drawing"

objFilter.Criteria.Add criterion

Dim objDrawing As LMDrawing

Dim objDrawings As LMDrawings

Set objDrawings = New LMDrawings
objDrawings.Collect datasource, Filter:=objFilter

Dim objRelationships As LMRelationships
Dim objRelationship As LMRelationship

Dim objlnconsistencies As LMInconsistencies
Dim objlnconsistency As LMInconsistency
Dim objAttribute As LMAAttribute

For Each objDrawing In objDrawings
Set objRelationships = objDrawing.Relationships
For Each objRelationship In objRelationships
Set objlnconsistencies = objRelationship.Inconsistencies
For Each objlnconsistency In objlnconsistencies
For Each objAttribute In objlnconsistency.Attributes

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 79

Debug.Print "Name: " & objAttribute.name & Space(20 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next
Next
Next
Next

Set datasource = Nothing

Set objDrawings = Nothing

Set objDrawing = Nothing

Set objRelationships = Nothing
Set objRelationship = Nothing
Set objInconsistencies = Nothing
Set objInconsistency = Nothing

80 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

54. ACCESS RULEREFERENCE

a) Purpose
To access the RuleReference.

b) Problem Statement

Write a standalone application to get all relationship objects belong to a drawing, then access the RuleReference
from relationship.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter
Dim criterion As LMACriterion

Set criterion = New LMACtiterion
Set objFilter = New LMAFilter

criterion.SourceAttributeName = "Name"
criterion.ValueAttribute = "Automation1"
criterion.Operator = "'="

objFilter.ItemType = "Drawing"

objFilter.Criteria.Add criterion

Dim objDrawing As LMDrawing

Dim objDrawings As LMDrawings

Set objDrawings = New LMDrawings
objDrawings.Collect datasource, Filter:=objFilter

Dim objRelationships As LMRelationships
Dim objRelationship As LMRelationship

Dim objRuleReferences As LMRuleReferences
Dim objRuleReference As LMRuleReference
Dim objAttribute As LMAAttribute

For Each objDrawing In objDrawings
Set objRelationships = objDrawing.Relationships
For Each objRelationship In objRelationships
Set objRuleReferences = objRelationship.RuleReferences
For Each objRuleReference In objRuleReferences
For Each objAttribute In objRuleReference.Attributes

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 81

Debug.Print "Name: " & objAttribute.name & Space(20 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next
Next
Next
Next

Set datasource = Nothing

Set objDrawings = Nothing

Set objDrawing = Nothing

Set objRelationships = Nothing
Set objRelationship = Nothing
Set objRuleReferences = Nothing
Set objRuleReference = Nothing

82 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

55. ACCESS PLANTGROUP FROM PLANTITEM

Purpose
To access the PlantGroup to which the Plantltem belongs.
b) Problem Statement

Place a vessel. Write a standalone application to get the plantgroup to which the Plantltem is associated.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objVessel As LMVessel
Set objVessel = datasource.GetVessel CONST_SPID_Vessel)

Dim objPlantGroup As LMPlantGroup

‘get the plantgroup just above the drawing, in our case, should be unit
Set objPlantGroup = objVessel.PlantGroupObject
Debug.Print "PlantGroup Name =" & objPlantGroup.Attributes("Name").Value

Dim strParentID As String
strParentID = objPlantGroup.Attributes("ParentID™).Value

Dim objParentPlantGroup As LMPlantGroup
Set objParentPlantGroup = datasource.GetPlantGroup(strParentID)
Debug.Print "Parent PlantGroup Name =" & objParentPlantGroup.Attributes("Name™).Value

Set datasource = Nothing

Set objVessel = Nothing

Set objPlantGroup = Nothing

Set objParentPlantGroup = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 83

56. ACCESS PLANTGROUP FROM DRAWING

a) Purpose
To access the PlantGroup to which the Drawing belongs.

b) Problem Statement

Place a vessel. Write a standalone application to obtain the drawing associated with the vessel. Get the plantgroup to
which the drawing belongs.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objVessel As LMVessel
Set objVessel = datasource.GetVessel CONST_SPID_Vessel)

Dim objPlantGroup As LMPlantGroup

'get the plantgroup just above the drawing, in our case, should be unit
Set objPlantGroup = objVessel.Representations.Nth(1).DrawingObject.PlantGroupObject
Debug.Print "PlantGroup Name =" & objPlantGroup.Attributes("Name™).Value

Dim strParentID As String
strParentID = objPlantGroup.Attributes("ParentID™).Value

Dim objParentPlantGroup As LMPlantGroup
Set objParentPlantGroup = datasource.GetPlantGroup(strParentID)
Debug.Print "Parent PlantGroup Name =" & objParentPlantGroup.Attributes("Name™).Value

Set datasource = Nothing

Set objVessel = Nothing

Set objPlantGroup = Nothing

Set objParentPlantGroup = Nothing

84 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

57. AcCESS CUSTOMIZED PLANTGROUP

a) Purpose
To access the customized property of a user defined PlantGroup type.

b) Problem Statement

Create a new PlantGroup type, “SubArea”, in SmartPlant Engineering Manager, then create a new Hierarcy template
using this new PlantGroup. Then create a new plant using this new Hierarcy template, after creation of new plant,
add a new property “T1” to the new PlantGroup. Write a standalone application to read this new property “T1”.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objVessel As LMVessel

Set objVessel = datasource.GetVessel CONST_SPID_Vessel) ‘get objVessel by id
Debug.Print objVessel.PlantGroupObject. Attributes("T1")

Debug.Print datasource.Getltem("SPMSubArea”, objVessel.PlantGroupID).Attributes("T1")

Set datasource = Nothing
Set objVessel = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 85

58. ACCESS WORKSHARE STIE

a) Purpose
To get familiar with the workshare site object in LLAMA.
b) Problem Statement

Place a Vessel, find the workshare site to which this vessel belongs. Print out properties of the workshare site.
Browser relateionship between workshare site and other entities, such as PlantGroup, PlantitemGroup, OPC, and
DrawingsSite.

c) Solution

¢ Example code
Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objVessel As LMVessel
Set objVessel = datasource.GetVessel(CONST_SPID_Vessel)

Dim objDrawing As LMDrawing
Set objDrawing = datasource.GetDrawing(objVessel.Representations.Nth(1).DrawingI D)

Dim objPlantGroup As LMPIlantGroup
'get the plantgroup just above the drawing, in our case, should be unit
Set objPlantGroup = objDrawing.PlantGroupObject

Dim objWSSite As LMWSSite
Set objWSSite = objPlantGroup.WSSiteObject

Dim objAttr As LMAAttribute
Debug.Print "How many attributes? " & objWSSite.Attributes.Count
For Each objAttr In objWSSite.Attributes
Debug.Print "Attribute Name: " & objAttr.name & " Attribute Value: " & objAttr.Value
Next

Dim objOPC As LMOPC
Debug.Print "Total OPCs in WS Site: " & objWSSite.OPCs.Count
For Each objOPC In objWSSite.OPCs

Debug.Print objOPC.Attributes("OPCTag").Value

Debug.Print objOPC.WSSiteObject.Attributes("Name").Value
Next

Dim objPlantltemGroup As LMPlantltemGroup
Debug.Print "Total PlantltemGroups in WS Site: " & objWSSite.PlantltemGroups.Count
For Each objPlantitemGroup In objWSSite.PlantltemGroups

86 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

Debug.Print objPlantitemGroup.Attributes("PlantitemGroupType™).Value
Debug.Print objPlantltemGroup.WSSiteObject. Attributes("Name").Value
Next

Debug.Print "Total PlantGroups in WS Site: " & objWSSite.PlantGroups.Count
For Each objPlantGroup In objWSSite.PlantGroups
Debug.Print objPlantGroup.Attributes("PlantGroupType™).Value
Debug.Print objPlantGroup.Attributes("Name™).Value
Debug.Print objPlantGroup.WSSiteObject.Attributes("Name").Value
Next

Dim objDrawingSite As LMDrawingSite
Debug.Print "Total DrawingSites in WS Site: " & objWSSite.DrawingSites.Count
For Each objDrawingsSite In objWSSite.DrawingSites
Debug.Print objDrawingSite.Attributes("Name").Value
Debug.Print objDrawingSite.WSSiteObject.Attributes("Name").Value
Next

Set datasource = Nothing

Set objVessel = Nothing

Set objDrawing = Nothing

Set objPlantGroup = Nothing

Set objAttr = Nothing

Set 0bjOPC = Nothing

Set objPlantltemGroup = Nothing
Set objDrawingSite = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 87

59. ACCESS DRAWINGSITE

a) Purpose
To get familiar with the drawingsite object in LLAMA.
b) Problem Statement

Get a drawingsite object, the print out properties of the drawingsite.

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then
Set datasource = New LMADataSource
Else
Set datasource = PIDDataSource
End If
Dim objVessel As LMVessel
Set objVessel = datasource.GetVessel CONST_SPID_Vessel)

Dim objDrawing As LMDrawing

Set objDrawing = datasource.GetDrawing(objVessel.Representations.Nth(1).DrawinglD)
Dim objDrawingSite As LMDrawingSite

Set objDrawingSite = objDrawing.DrawingSites.Nth(1)

Dim objAttr As LMAAttribute
Debug.Print "How many attributes? " & objDrawingSite.Attributes.Count
For Each objAttr In objDrawingSite. Attributes
Debug.Print "Attribute Name: " & objAttr.name & " Attribute Value: " & objAttr.Value
Next

Dim objDrawingSubscriber As LMDrawingSubscriber
Debug.Print "Total drawing subscriber: " & objDrawingSite. DrawingSubscribers.Count
For Each objDrawingSubscriber In objDrawingSite.DrawingSubscribers
Debug.Print objDrawingSubscriber.DrawingSiteObject. Attributes("Name").Value
Debug.Print objDrawingSubscriber.WSSiteObject.Attributes("Name").Value
Next

Debug.Print objDrawingSite.DrawingObject. Attributes(*Name").Value
Debug.Print objDrawingSite.WSSiteObject.Attributes("Name™).Value
If Not objDrawingSite. ToWSSiteWSSiteObject Is Nothing Then

Debug.Print objDrawingSite. ToWSSiteWSSiteObject. Attributes(*Name").Value
End If
Debug.Print objDrawingSite.PlantGroupObject. Attributes(*Name").Value

Set datasource = Nothing

Set objVessel = Nothing

Set objDrawing = Nothing

Set objDrawingSite = Nothing

Set objDrawingSubscriber = Nothing
Set objAttr = Nothing

88 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

60. WORKSHARE AWARENESS IN LLAMA

a) Purpose
To check out the workshare awareness in LLAMA.
b) Problem Statement

Set a satellite site as active project, then access a vessel in a drawing which is read-only for this satellite site, try to
modify the property of the vessel and commit to database. See what happens?

c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

datasource.BeginTransaction

Dim objVessel As LMVessel

Set objVessel = datasource.GetVessel CONST_SPID_Vessel)
Debug.Print objVessel. Attributes("Name").Value

‘expects error in following code, "Read Only attribute”
objVessel. Attributes("Name").Value = "InWorkshare"
objVessel.Commit

datasource.CommitTransaction

Set datasource = Nothing
Set objVessel = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 89

61. ACCESS ACTIVE PROJECT

a) Purpose
To access the active project

b) Problem Statement

Set The Plant or one of projects as active project, then use LMADatasource.GetActiveProject to obtain the active
project. Then, print out all attributions of the active project, pay attention to the Project Status.

c) Solution

¢ Example code

Dim datasource As LMADataSource
Dim objActiveProject As LMActiveProject
Dim objAttribute As LMAALtribute

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Set objActiveProject = datasource.GetActiveProject
For Each objAttribute In objActiveProject. Attributes
Debug.Print "Name: " & objAttribute.name & Space(20 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
Next

Set datasource = Nothing
Set objActiveProject = Nothing
Set objAttribute = Nothing

90 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

62. HoOw TO ACCESS PLANT FROM PROJECT

a) Purpose
When user is in a project, how to find the project belongs to which The Plant?

b) Problem Statement

Set one of the projects as active project, then try to find The Plant.

c) Solution

¢ Example code

Dim datasource As LMADataSource
Dim objPlantGroups As LMPIlantGroups
Dim objPlantGroup As LMPlantGroup
Dim objAttribute As LMAALtribute

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Set objPlantGroups = New LMPlantGroups
objPlantGroups.Collect datasource

Debug.Print "Total PlantGroups: " & objPlantGroups.Count

For Each objPlantGroup In objPlantGroups
For Each objAttribute In objPlantGroup.Attributes
Debug.Print "Name: " & objAttribute.name & Space(20 - Len(objAttribute.name)) & "Value: " &
objAttribute.Value
If objAttribute.name = "Depth" And objAttribute.Value = "0" Then
MsgBox "ThePlant is: " & objPlantGroup.Attributes("Name™)
End If
Next
Next

Set datasource = Nothing

Set objPlantGroups = Nothing
Set objPlantGroup = Nothing
Set objAttribute = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 91

63. AcCCESS CLAIM STATUS OF ITEMS

a) Purpose
To access the items’ claim status.
b) Problem Statement

Set items in different claim status, and access claim status by using function
LMADatasource.GetModelltemClaimStatus
c) Solution

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objVessel As LMVessel
Set objVessel = datasource.GetVessel CONST_SPID_Vessel) ‘get objVessel by id

‘check Claim status
Debug.Print datasource.GetModelltemClaimStatus(objVessel. AsSLMAIltem)

Set datasource = Nothing
Set objVessel = Nothing

92 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

64. ACCESS OPTIONSETTINGS

Purpose
To access the OptionSetting by Filter, and read value of OptionSetting

b) Problem Statement

Write a standalone application to obtain optionsetting (Default Assembly Path) by filter and read the value of the
optionsetting.

c) Solution

1. Dim LMAFilter, LMACriterion, LMOptionSetting

2. LMOptionSetting is a independent object, which does not has any relationship with other objects in
Data Model. To access LMOptionSetting, users need to know exactly what they are looking for, for
example, in optionsettings, where is the “Default Assembly Path” ?

¢ Example code

Dim datasource As LMADataSource

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Dim objFilter As LMAFilter

Dim criterion As LMACtiterion
Set criterion = New LMACriterion
Set objFilter = New LMAFilter

criterion.SourceAttributeName = "Name"
criterion.ValueAttribute = "Default Assembly Path”

criterion.Operator = "'="
objFilter.ItemType = "OptionSetting"
objFilter.Criteria.Add criterion

Dim objOptionSettings As LMOptionSettings

Dim objOptionSetting As LMOptionSetting

Set objOptionSettings = New LMOptionSettings

'get "Default Assembly Path" from OptionSettings by filter
objOptionSettings.Collect datasource, Filter:=objFilter

Set objOptionSetting = objOptionSettings.Nth(1)
Debug.Print "Name =" & objOptionSetting.Attributes(*Name").Value
Debug.Print "Value =" & objOptionSetting.Attributes("Value™).Value

Set datasource = Nothing

Set objFilter = Nothing

Set criterion = Nothing

Set objOptionSettings = Nothing
Set objOptionSetting = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 93

65. CREATE A VESSEL AND PLACE INTO STOCKPILE

Purpose

Use PIDCreateltem method to create a vessel in the stockpile

b) Problem Statement

Write a standard executable to create a vessel and place it in the stockpile.

c) Solution

Open the SmartPlant P&ID drawing.

Create a drawing through SPManager.
Double-click on the drawing to open up SmartPlant P&ID

Create a standard executable VB project

Select a standard exe project
Reference the “Logical Model Automation” and “Placement Automation” libraries

Add code to place a vessel into stockpile

Use the Function Function PIDCreateltem(DefinitionFile As String) As LMAIltem
Provide the DefinitionFile string indicating the location of the symbol on a server
Use the return value to future reference.

Example code

C NOU S AW S NP O

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim item As LMAItem
Dim dirpath As String

Dim VesselLocation As String
VesselLocation = "\Equipment\VVessels\Horizontal Drums\Horz Surge w-Horiz Dea.sym"
‘create a vessel into stockpile
Set item = objPlacement.PIDCreateltem(VesselLocation)
If item Is Nothing Then
MsgBox "unsuccessful placement"
End If

Set objPlacement = Nothing
Set item = Nothing

94 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

66.

Purpose

PLACE A VESSEL ON A DRAWING

Use the PidPlaceSymbol method to place a vessel on a drawing

b) Problem Statement

Write a standard executable to place a vessel on a drawing.

c) Solution

o
1
2
o
3.
4
o
5

6
7.
8.
0

Open the SmartPlant P&ID drawing.

Create a drawing th
Double-click on the

rough SPManager.
drawing to open up SmartPlant P&ID

Create a standard executable VB project
Select a standard exe project

Reference the “Logi

cal Model Automation” and “Placement Automation” libraries

Add code to place a vessel

Use the method Function PIDPlaceSymbol(DefinitionFile As String, X As Double, Y As Double,
[Mirror], [Rotation], [Existingltem As LMAIltem], [Targetltem]) As LMSymbol

Provide the DefinitionFile string indicating the location of the symbol on a server

Provide the X and Y coordinates of the placement on the drawing.

Use the return value to future reference.

Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim dirpath As String

Dim symbol As LMSymbol
Dim VesselLocation As Stri

ng

VesselLocation = "\Equipment\VVessels\Horizontal Drums\Horz Surge w-Horiz Dea.sym"

'place a vessle into active drawing
Set symbol = objPlacement.PIDPlaceSymbol(VesselLocation, 0.3, 0.2)

If symbol Is Nothing Then

MsgBox "unsuccessful placement"

End If

Set objPlacement = Nothing
Set symbol = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 95

67. PLACE NOZZLES AND TRAYS ON A VESSEL

Purpose

Use PIDPlaceSymbol method to place equipment components on a vessel

b) Problem Statement

Write a standard executable to place nozzles and trays on a vessel.

c) Solution

Open the SmartPlant P&ID drawing.

Create a drawing through SPManager.
Double-click on the drawing to open up SmartPlant P&ID

Create a standard executable VB project

¢

1

2

¢

3. Select a standard exe project

4 Reference the “Logical Model Automation” and “Placement Automation” libraries
¢
5

Add code to place a vessel

Use the Function PIDPlaceSymbol(DefinitionFile As String, X As Double, Y As Double, [Mirror],
[Rotation], [Existingltem As LMAItem], [Targetltem]) As LMSymbol

6 Provide the DefinitionFile string indicating the location of the symbol on a server

7. Provide the X and Y coordinates of the placement on the drawing.

8. Provide the Targetltem as an LMAltem.

9. Use the return value to future reference.

10. Repeat place nozzles while set PIDSnapToTarget to TRUE

O

Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim strdirpath As String
Dim nozzleName As String
Dim trayName As String

Dim xvessel As Double

Dim yvessel As Double
xvessel = 0.3

yvessel = 0.2

Dim symVessel As LMSymbol
Dim symbol2 As LMSymbol
Dim symbol3 As LMSymbol
Dim symbol4 As LMSymbol
Dim symbol5 As LMSymbol
Dim vesselName As String
Dim symbol21 As LMSymbol
Dim symbol31 As LMSymbol

vesselName = "\Equipment\Vessels\Vertical Drums\1D 1C 2tol.sym"
nozzleName = "\Equipment Components\Nozzles\Flanged Nozzle with blind.sym"
trayName = "\Equipment Components\Trays\Bubble Cap Trays\2-Pass Bubl Side.sym"

'place a vessel
Set symVessel = objPlacement.PIDPlaceSymbol(vesselName, xvessel, yvessel)

96 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

'set Cleaning Requirement for the Vessel

Dim objVessel As LMVessel

Set objVessel = objPlacement.PIDDataSource.GetVessel(symVessel.ModelltemID)

objVessel.Attributes("CleaningRegmts™).Value = "CC1"

‘place two nozzles on vessel

Set symbol2 = objPlacement.PIDPlaceSymbol(nozzleName, xvessel - 0.2, yvessel + 0.05, _
Targetltem:=symVessel. ASLMRepresentation)

Set symbol3 = objPlacement.PIDPlaceSymbol(nozzleName, xvessel + 0.2, yvessel + 0.07, _
Targetltem:=symVessel. ASLMRepresentation)

‘place two trays on vessel

Set symbol4 = objPlacement.PIDPlaceSymbol(trayName, xvessel - 0.05, yvessel + 0.05, _
Targetltem:=symVessel. ASLMRepresentation)

Set symbol5 = objPlacement.PIDPlaceSymbol(trayName, xvessel + 0.05, yvessel + 0.1,
Targetltem:=symVessel. AsSL MRepresentation)

" 'place nozzles again use same X, Y coordinates, but this time set PIDSnapToTarget=false

" objPlacement.PIDSnapToTarget = False

" Set symbol21 = objPlacement.PIDPlaceSymbol(nozzleName, xvessel - 0.2, yvessel + 0.05, _
Targetltem:=symVessel. AsL MRepresentation)

" Set symbol31 = objPlacement.PIDPlaceSymbol(nozzleName, xvessel + 0.2, yvessel + 0.07, _
Targetltem:=symVessel. AsL MRepresentation)

" objPlacement.PIDSnapToTarget = True

'PIDSetCopyPropertiesFlag is not working, always copy the properties according to Rule

" 'place nozzles again use new X, Y coordinates, but this time set PIDSetCopyPropertiesFlag=false
" objPlacement.PIDSetCopyPropertiesFlag False

" Set symbol21 = objPlacement.PIDPlaceSymbol(nozzleName, xvessel - 0.2, yvessel + 0.05, _
Targetltem:=symVessel. AsL MRepresentation)

" Set symbol31 = objPlacement.PIDPlaceSymbol(nozzleName, xvessel + 0.2, yvessel + 0.07, _
Targetltem:=symVessel. AsL MRepresentation)

" objPlacement.PIDSetCopyPropertiesFlag True

Set objPlacement = Nothing
Set symVessel = Nothing
Set symbol2 = Nothing
Set symbol3 = Nothing
Set symbol4 = Nothing
Set symbol5 = Nothing
" Set symbol21 = Nothing
" Set symbol31 = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 97

68. PLACE LABELS ON A VESSEL

Purpose

Use PIDPlaceLabel method to place labels on equipment

b) Problem Statement

Write a standard executable to populate some properties of a vessel and then place labels to display them.

c) Solution

o
1
2
o
3.
4
o
5

Open the SmartPlant P&ID drawing.

Create a drawing through SPManager.
Double-click on the drawing to open up SmartPlant P&ID

Create a standard executable VB project

Select a standard exe project
Reference the “Logical Model Automation” and “Placement Automation” libraries

Add code to place a vessel

Use the Function PIDPlaceSymbol(DefinitionFile As String, X As Double, Y As Double, [Mirror],

[Rotation], [Existingltem As LMAItem], [Targetltem]) As LMSymbol

6. Provide the DefinitionFile string indicating the location of the symbol on a server

7. Provide the X and Y coordinates of the placement on the drawing.

8. Provide the Targetltem as an LMAItem when placing nozzles or trays.

9. Use the return value to future reference.

¢ Add code to delete the vessel

10. Use the Function PIDPlaceLabel(DefinitionFile As String, Points() As Double, [Mirror], [Rotation],
[Labeleditem As LMRepresentation], [IsLeaderVisible As Boolean = False]) As LMLabelPersist

11. The Points array consists of the exact number of points (starting from index 1) necessary to place
the label.

12. The LMRepresentation argument must be a representation of the parent item on the drawing.

13. The return object is the label object.

¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim strdirpath As String

Dim nozzleName As String

Dim trayName As String

Dim labelNamel As String

Dim labelName2 As String

Dim labelName3 As String

Dim vessel As LMVessel

Dim labelpersist As LMLabelPersist

Dim xvessel As Double
Dim yvessel As Double
xvessel = 0.2
yvessel = 0.2

Dim symVessel As LMSymbol
Dim vesselName As String

98 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

Dim points(1 To 4) As Double
Dim twopoints(1 To 2) As Double

vesselName = "\Equipment\\VVessels\Vertical Drums\1D 1C 2tol.sym"
labelNamel = "\Equipment\Labels - Equipment\Equipment Name.sym"
labelName2 = "\Equipment\Labels - Equipment\Insulation Purpose.sym"
labelName3 = "\Equipment\Labels - Equipment\Heat Tracing.sym"

'place vessel

Set symVessel = objPlacement.PIDPlaceSymbol(vesselName, xvessel, yvessel)
'get placed vessel and set some properties' value

Set vessel = objPlacement.PIDDataSource.GetVessel(symVessel.ModelltemID)
vessel.name = "Vessel for Label Placement

vessel.InsulPurpose = "R15"

vessel.HTraceMedium = "SS"

vessel.HTraceMediumTemp = "300 F"

vessel.HTraceReqmt = "ET"

'place three different labels for the vessel

twopoints(1) = xvessel + 0.02

twopoints(2) = yvessel + 0.1

Set labelpersist = objPlacement.PIDPlaceLabel(labelNamel, _
twopoints, Labeleditem:=symVessel. ASLMRepresentation)

points(1) = xvessel

points(2) = yvessel

points(3) = xvessel - 0.05

points(4) = yvessel + 0.1

Set labelpersist = objPlacement.PIDPlaceLabel(labelName2, _
points(), Labeleditem:=symVessel. AsLMRepresentation, _
IsLeaderVisible:=True)

points(1) = xvessel

points(2) = yvessel

points(3) = xvessel + 0.05

points(4) = yvessel + 0.1

Set labelpersist = objPlacement.PIDPlaceLabel(labelName3, _
points(), Labeleditem:=symVessel. AsLMRepresentation, _
IsLeaderVisible:=True)

Set objPlacement = Nothing
Set symVessel = Nothing
Set labelpersist = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 99

69. PLACEOPC

a) Purpose
Use PIDPlaceOPC method to place an OPC into drawing.
b) Problem Statement

Write a standard executable to place an OPC into drawing.

c) Solution

¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim OPClocation As String
OPClocation = "\Piping\Piping OPC's\Off-Drawing.sym"

‘place a vessle into active drawing
Dim symbol As LMSymbol
Set symbol = objPlacement.PIDPlaceSymbol(OPClocation, 0.1, 0.1)

If symbol Is Nothing Then
MsgBox "unsuccessful placement”
End If

Set objPlacement = Nothing
Set symbol = Nothing

100 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

70. PLAcCE OPC FrRoOM STOCKPILE

a) Purpose
Use PIDPlaceOPC method to place an OPC from StockPile into drawing.
b) Problem Statement

Place an OPC into a drawing, and place its pair OPC in plant stockpile, then open another drawing with a piperun
placed, then write a standard executable to find the OPC, then find its pair OPC in StockPile, then place it pair OPC
from StockPile into current drawing, and connect with the piperun.

c) Solution

¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim OPClocation As String
OPClocation = "\Piping\Piping OPC's\Off-Drawing.sym"

Dim objOPC As LMOPC
Dim objpairOPC As LMOPC

Set 0bjOPC = objPlacement.PIDDataSource.GetOPC(CONST_SPID_OPC)
Set objpairOPC = objOPC.pairedWithOPCObject

Dim objConnector As LMConnector
Dim objPiperun As LMPipeRun
Dim objRep As LMRepresentation

Set objPiperun = objPlacement.PIDDataSource.GetPipeRun(CONST_SPID_PipeRun)
For Each objRep In objPiperun.Representations
If objRep.Attributes("RepresentationType").Value = "Connector” Then
Set objConnector = objPlacement.PIDDataSource.GetConnector(objRep.ID)
Exit For
End If
Next

Dim X As Double
Dim Y As Double

X = objConnector.ConnectorVertices.Nth(1).Attributes("XCoordinate").Value

Y = objConnector.ConnectorVertices.Nth(1).Attributes("Y Coordinate™).Value

‘place the OPC from stockpile into active drawing

Dim symbol As LMSymbol

Set symbol = objPlacement.PIDPlaceSymbol(OPClocation, X, Y, , , objpairOPC.AsLMAIltem)

If symbol Is Nothing Then
MsgBox "unsuccessful placement"
End If

Set objPlacement = Nothing
Set symbol = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 101

71. PLACE PIPERUN WITH PIDPLACERUN

a) Purpose
Use PIDPlaceRun method to place a Piperun from stockpile into active drawing

b) Problem Statement

Write a standalone application to create a piperun in stockpile, then place this piperun from stockpile into active

drawing. Then place a valve, and place a piperun connects first piperun and the valve.

c) Solution

¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim PipeRunLocation As String
Dim objltem As LMAItem

Dim objConnector As LMConnector
Dim objlnputs As PlaceRuninputs
Dim objSymbol As LMSymbol

Dim ValveLocation As String

PipeRunLocation = "\Piping\Routing\Process Lines\Primary Piping.sym

Set objInputs = New PlaceRunlnputs
objlnputs.AddPoint 0.1, 0.1
objlnputs.AddPoint 0.2, 0.1

Set objltem = objPlacement.PIDCreateltem(PipeRunLocation)
Set objConnector = objPlacement.PIDPlaceRun(objltem, objlnputs)

ValvelLocation = "\Piping\Valves\2 Way Common\Ball Valve.sym"
Set objSymbol = objPlacement.PIDPlaceSymbol(ValveLocation, 0.15, 0.3, , 1.57)

Set objInputs = New PlaceRunInputs
objlnputs.AddConnectorTarget objConnector, 0.15, 0.1
objlnputs.AddPoint 0.15, 0.15

objlnputs.AddPoint 0.12, 0.15

objlnputs.AddPoint 0.12, 0.2

objlnputs.AddPoint 0.15, 0.2
objlnputs.AddSymbolTarget objSymbol, 0.15, 0.3

Set objltem = objPlacement.PIDCreateltem(PipeRunLocation)

Set objConnector = objPlacement.PIDPlaceRun(objltem, objlnputs)
‘clean up

Set objPlacement = Nothing

Set objltem = Nothing

Set objConnector = Nothing

Set objSymbol = Nothing

Set objlnputs = Nothing

102 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

72. JOIN TWO PIPERUNS

a) Purpose
Use PIDAutoJoin to auto join two piperuns

b) Problem Statement

Write a standalone application to createa piperun in stockpile, then place this piperun from stockpile into active
drawing. Then place another piperun from middle of first piperun to have an end open, then place a vessel with a
nozzle, then place a new piperun connects nozzle and second piperun, then use PIDAutoJoin to join second and third
piperuns.

c) Solution

¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim PipeRunLocation As String
Dim objltem As LMAItem

Dim objConnector As LMConnector
Dim objlnputs As PlaceRuninputs
Dim objSymbol As LMSymbol

Dim VesselLocation As String

Dim NozzleLocation As String

Dim objPiperuns As LMPipeRuns
Dim objPiperun As LMPipeRun
Dim objSurvivorltem As LMAItem

Set objPiperuns = New LMPipeRuns
PipeRunLocation = "\Piping\Routing\Process Lines\Primary Piping.sym"

Set objInputs = New PlaceRuninputs
objlnputs.AddPoint 0.1, 0.1
objlnputs.AddPoint 0.2, 0.1

first piperun
Set objltem = objPlacement.PIDCreateltem(PipeRunLocation)
Set objConnector = objPlacement.PIDPlaceRun(objltem, objlnputs)

Set objlnputs = New PlaceRunlnputs
objlnputs.AddLocatedTarget 0.15, 0.1
objlnputs.AddPoint 0.15, 0.3

'second piperun

Set objltem = objPlacement.PIDCreateltem(PipeRunLocation)

Set objConnector = objPlacement.PIDPlaceRun(objltem, objlnputs)

objPiperuns.Add objPlacement.PIDDataSource.GetPipeRun(objConnector.ModelltemID)

VesselLocation = "\Equipment\VVessels\Vertical Drums\1D 1C 2tol.sym"
NozzleLocation = "\Equipment Components\Nozzles\Flanged Nozzle with blind.sym"

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 103

Set objSymbol = objPlacement.PIDPlaceSymbol(VesselLocation, 0.15, 0.5)
Set objSymbol = objPlacement.PIDPlaceSymbol(NozzleLocation, 0.15, 0.5 - 0.1,
Targetltem:=objSymbol.AsSLMRepresentation)

Set objlnputs = New PlaceRunlnputs

objInputs.AddConnectorTarget objConnector, 0.15, 0.3

objInputs.AddSymbolTarget objSymbol, objSymbol.Attributes("XCoordinate™),
objSymbol.Attributes("Y Coordinate™)

'third piperun

Set objltem = objPlacement.PIDCreateltem(PipeRunLocation)

Set objConnector = objPlacement.PIDPlaceRun(objltem, objlnputs)

objPiperuns.Add objPlacement.PIDDataSource.GetPipeRun(objConnector.ModelltemID)

‘AutoJoin
For Each objPiperun In objPiperuns
objPlacement.PIDAutoJoin objPiperun.AsLMAItem, autoJoin_Both, objSurvivorltem

Next

MsgBox "Done!"

‘clean up
Set objPlacement = Nothing
Set objltem = Nothing
Set objConnector = Nothing
Set objSymbol = Nothing
Set objlnputs = Nothing

104 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

73. PLACE GAP

Purpose
Use PIDPlaceGap method to place a Gap.

b) Problem Statement

Write a standalone application to place Connector, then place a Gap in the middle of the connector

c) Solution
1. PIDPlaceGap returns a LMSymbol object, whose RepresentationType is “GAP”

¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim PipeRunLocation As String
PipeRunLocation = "\Piping\Routing\Process Lines\Primary Piping.sym"

Dim twopoints(1 To 4) As Double
twopoints(1) = 0.2
twopoints(2) = 0.2
twopoints(3) = 0.4
twopoints(4) = 0.2

Dim objConnector As LMConnector
Set objConnector = objPlacement.PIDPlaceConnector(PipeRunLocation, twopoints)

Dim gaplocation As String

gaplocation = "\Piping\Gaps\gap-lines.sym"

Dim objSymbol As LMSymbol

Set objSymbol = objPlacement.PIDPlaceGap(gaplocation, 0.3, 0.2, 0.02, 0.02, objConnector, -1.57)

Set objConnector = Nothing
Set objSymbol = Nothing
Set objPlacement = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 105

74. PLACE BOUNDEDSHAPE

a) Purpose
Use PIDPlaceBoundedShape method to place a BoundedShape (AreaBreak).
b) Problem Statement

Write a standalone application to place a BoundedShape (AreaBreak) and a vessel with nozzle. Add a vessel and
assign it to be a part of the AreaBreak

c) Solution

1. PIDPlaceBoundedShape places a visual BoundedShape aroung the items rather than estbilish the
relationship between BoundedShape and items inside of it.

¢ Example code

Dim objPlacement As PlacementSet objPlacement = New Placement

Dim datasource As LMADataSource
Set datasource = objPlacement.PIDDataSource

Dim VesselLocation As String
VesselLocation = "\Equipment\Vessels\Vertical Drums\1D 1C 2tol.sym"

‘place a vessel
Dim objSymboll As LMSymbol
Set objSymboll = objPlacement.PIDPlaceSymbol(VesselLocation, 0.25, 0.25)

‘place a nozzle on the vessel

Dim NozzleLocation As String

NozzleLocation = "\Equipment Components\Nozzles\Flanged Nozzle with blind.sym"

Dim objSymbol2 As LMSymbol

Set objSymbol2 = objPlacement.PIDPlaceSymbol(NozzleLocation, 0#, 0#, , , , objSymboll.AsLMRepresentation)

Dim points(1 To 10) As Double
points(1) = 0.1
points(2) = 0.1
points(3) = 0.4
points(4) = 0.1
points(5) = 0.4
points(6) = 0.4
points(7) = 0.1
points(8) = 0.4
points(9) = 0.1
points(10) = 0.1

'place BoundedShape(it is a AreaBreak)

Dim boundedshapelocation As String

boundedshapelocation = "\Design\Area Break.sym"

Dim objBoundedShaped As LMBoundedShape

Set objBoundedShaped = objPlacement.PIDPlaceBoundedShape(boundedshapelocation, points)

‘get the placed vessel

106 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

Dim objVessel As LMVessel
Set objVessel = datasource.GetVessel(objSymboll.ModelltemID)

'get the BoundedShpae(AreaBreak) as PlantitemGroup
Dim objPlantitemGroup As LMPlantltemGroup
Set objPlantltemGroup = datasource.GetPlantltemGroup(objBoundedShaped.ModelltemID)

Debug.Print "The vessel belongs to how many plantitemgroups? =" & objVessel.PlantitemGroups.Count

‘add the vessel to the PlantltemGroup

objVessel.PlantltemGroups.Add objPlantitemGroup

'objVessel.Commit

Debug.Print "The vessel belongs to how many plantitemgroups? =" & objVessel.PlantitemGroups.Count

Set objPlacement = Nothing
Set datasource = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 107

75. PLACE ASSEMBLY

a) Purpose
Use PIDPlaceAssembly method to place assembly into drawing

b) Problem Statement

Create an assembly using the SmartPlant P&ID modeler. Write a standalone application to place an assembly into
drawing.

c) Solution

If the Assembly’s source is in a location that is not accessible, change the source to current machine first

¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim assemblylocation As String
assemblylocation = "\Assemblies\test.pid"

Dim objltems As LMAItems
‘place assembly
Set objltems = objPlacement.PIDPlaceAssembly(assemblylocation, 0#, 0#)
If objltems.Count <> 0 Then
MsgBox "Place Assembly Completed™
End If

Set objPlacement = Nothing
Set objltems = Nothing

108 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

76. DELETE VESSEL FROM DRAWING

a) Purpose

Use PIDRemovePlacement method to delete vessel from drawing

b) Problem Statement

Write a standard executable to delete vessel from the drawing.

c) Solution

¢ Open the SmartPlant P&ID drawing.
14, Create a drawing through SPManager.

15. Double-click on the drawing to open up SmartPlant P&ID

¢ Create a standard executable VB project

16. Select a standard exe project

17. Reference the “Logical Model Automation” and “Placement Automation” libraries

¢ Add code to delete the vessel from drawing

18. Use the Function PIDRemovePlacement(Representation As LMRepresentation) As Boolean
19. The LMRepresentation argument must be a representation of the item on the drawing.

20. The boolean return value can be stored to determine success or failure.

¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim objRep As LMRepresentation
Dim objVessel As LMVessel

Dim objSym As LMSymbol

Dim VesselLocation As String

VesselLocation = "\Equipment\VVessels\Horizontal Drums\Horz Surge w-Horiz Dea.sym

'place a vessel into drawing
Set objSym = objPlacement.PIDPlaceSymbol(VesselLocation, 0.2, 0.2)

Set objVessel = objPlacement.PIDDataSource.GetVessel(objSym.ModelltemID)
Set objRep = objVessel.Representations.Nth(1)
‘remove the vessel from drawing into stockpile

Dim success As Boolean

success = objPlacement.PIDRemovePlacement(objRep)

If success Then

MsgBox "Symbol removed successfully"

Else

MsgBox "RemovePlacement unsuccessful"

End If

Set objPlacement = Nothing

Set objVessel = Nothing
Set objRep = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 109

/7. DELETE VESSEL FROM MODEL

a) Purpose

Use PIDDeleteltem method to delete vessal from the project

b) Problem Statement

Write a standard executable to delete a vessel from project.

c) Solution

NOO O AW S NP O

<

Open the SmartPlant P&ID drawing.

Create a drawing through SPManager.
Double-click on the drawing to open up SmartPlant P&ID

Create a standard executable VB project

Select a standard exe project
Reference the “Logical Model Automation” and “Placement Automation” libraries

Add code to delete the vessel from model

Use the Function PIDDeleteltem(ltem As LMAItem) As Boolean to remove from model
The LMRepresentation argument must be a representation of the item on the drawing.
The boolean return value can be stored to determine success or failure.

Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim objltem As LMAItem
Dim success As Boolean

Dim objSym As LMSymbol
Dim VesselLocation As String

VesselLocation = "\Equipment\Vessels\Horizontal Drums\Horz Surge w-Horiz Dea.sym"
‘place a vessel into drawing
Set objSym = objPlacement.PIDPlaceSymbol(VesselLocation, 0.2, 0.2)

Set objltem = objPlacement.PIDDataSource.GetVessel(objSym.ModelltemID).AsLMAIltem
success = False
success = objPlacement.PIDDeleteltem(objltem)
If success Then
MsgBox "deletion from drawing successfully"
Else
MsgBox "deletion from drawing unsuccessful”
End If

Dim item As LMAItem
Set item = objPlacement.PIDCreateltem(VesselLocation)
Set objltem = objPlacement.PIDDataSource.GetVessel(item.ID).AsSLMAItem
success = False
success = objPlacement.PIDDeleteltem(objltem)
If success Then
MsgBox "deletion from stockpile successfully"

110 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

Else
MsgBox "deletion from stockpile unsuccessful”
End If

Set objPlacement = Nothing
Set objltem = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 111

78. REPLACE SYMBOL

Purpose

Use PIDRePlaceSymbol method to replace a vessel.

b) Problem Statement

Write a standalone application to place a vessel with a nozzle on it. Replace the vessel with different vessel. Note
that the vessel is replaced and the nozzle is now on the new vessel.

c) Solution

¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim VesselLocation As String

VesselLocation = "\Equipment\Vessels\Vertical Drums\1D 1C 2tol.sym"
‘place a vessel

Dim objSymboll As LMSymbol

Set objSymboll = objPlacement.PIDPlaceSymbol(VesselLocation, 0.2, 0.2)

Dim NozzleLocation As String

NozzleLocation = "\Equipment Components\Nozzles\Flanged Nozzle with blind.sym"

‘place a nozzle on the vessel

Dim objSymbol2 As LMSymbol

Set objSymbol2 = objPlacement.PIDPlaceSymbol(NozzleLocation, 0.3, 0.2, , , ,
objSymboll.AsLMRepresentation)

'replace the vessel, note nozzle is still on the new vessel

Dim replacevesselname As String

replacevesselname = "\Equipment\VVessels\Vertical Drums\2to1Parametric V Drum.sym"
Dim objSymbol3 As LMSymbol

Set objSymbol3 = objPlacement.PIDReplaceSymbol(replacevesselname, objSymboll)

Set objSymboll = Nothing
Set objSymbol2 = Nothing
Set objSymbol3 = Nothing
Set objPlacement = Nothing

112 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

79. REPLACE LABEL

Purpose
Use PIDRePlaceLabel method to replace a label.

b) Problem Statement

Write a standalone application to place a vessel with a nozzle on it, then replace the vessel with different vessel.
Note vessel is replaced with nozzle now is sitting on the new vessel.

c) Solution

¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim VesselLocation As String

VesselLocation = "\Equipment\Vessels\Vertical Drums\2to1Parametric V Drum.sym"
‘place a vessel

Dim objSymboll As LMSymbol

Set objSymboll = objPlacement.PIDPlaceSymbol(VesselLocation, 0.2, 0.2)

‘get the vessel and set some properties' value

Dim objVessel As LMVessel

Set objVessel = objPlacement.PIDDataSource.GetVessel(objSymboll.ModelltemID)
objVessel. Attributes("Name").Value = "V1"

objVessel. Attributes("TagPrefix™).Value = "T"

objVessel.Commit

Dim labelNamel As String

labelNamel = "\Equipment\Labels - Equipment\Equipment Name.sym"
Dim twopoints(1 To 4) As Double

twopoints(1) = 0.21

twopoints(2) = 0.25

twopoints(3) = 0.1

twopoints(4) = 0.1

‘place a label on the vessel

Dim objLabelPersistl As LMLabelPersist

Set objLabelPersistl = objPlacement.PIDPlaceLabel(labelNamel, twopoints, , ,
objSymboll.AsLMRepresentation, True)

Dim replacelabelname As String
replacelabelname = "\Equipment\Labels - Equipment\Equipment ID.sym"

'replace the label with new label
Dim objLabelPersist2 As LMLabelPersist
Set objLabelPersist2 = objPlacement.PIDReplaceLabel(replacelabelname, objLabelPersist1)

Set objSymboll = Nothing

Set objLabelPersistl = Nothing
Set objLabelPersist2 = Nothing
Set objPlacement = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 113

80. REePLACE OPC

a) Purpose
Use PIDRePlaceOPC method to replace an OPC.
b) Problem Statement

Write a standalone application to replace an OPC on draiwng.

c) Solution

¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim OPClocation As String
OPClocation = "\Piping\Piping OPC's\Off-Drawing-New.sym"

Dim objOPC As LMOPC
Set objOPC = objPlacement.PIDDataSource.GetOPC("28B79FF6B52047DB98600BE313648290")

Dim objSymbol As LMSymbol
Set objSymbol = objPlacement.PIDDataSource.GetSymbol(objOPC.Representations.Nth(1).1D)

Dim objSymboll As LMSymbol
Set objSymboll = objPlacement.PIDReplaceSymbol(OPClocation, objSymbol)

Set objSymbol = Nothing
Set objSymboll = Nothing
Set 0bjOPC = Nothing

Set objPlacement = Nothing

114 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

81. MODIFY PARAMETRIC SYMBOL

a) Purpose
Use PIDApplyParameters method to modifty a Parametric Symbol
b) Problem Statement

Write a standalone application to place a parametric vessel symbol, and place a nozzle on it. Then, Modifies the
parameters of the vessel.

c) Solution

1. Names() are the Variables defined in Catalog Manager for the parametric symbol
¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim VesselLocation As String

VesselLocation = "\Equipment\Vessels\Vertical Drums\2to1Parametric V Drum.sym"
Dim objSymboll As LMSymbol

Set objSymboll = objPlacement.PIDPlaceSymbol(VesselLocation, 0.2, 0.2, True, 1.57)

Dim NozzleLocation As String

NozzleLocation = "\Equipment Components\Nozzles\Flanged Nozzle with blind.sym"

Dim objSymbol2 As LMSymbol

Set objSymbol2 = objPlacement.PIDPlaceSymbol(NozzleLocation, 0.22, 0.4, , , ,
objSymboll.AsLMRepresentation)

Dim names(1 To 2) As String
Dim values(1 To 2) As String
names(1) = "Top"

names(2) = "Right"

values(1) = "0.38"

values(2) ="0.2"

objPlacement.PIDApplyParameters objSymboll.AsLMRepresentation, names, values
Set objSymboll = Nothing

Set objSymbol2 = Nothing
Set objPlacement = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 115

82. LocCATE X, Y COORDINATES OF SIGNAL POINTS ON AN INSTRUMENT

a) Purpose
Using PIDConnectPointLocation to locate X, Y coordinates of signal points on an instrument.

b) Problem Statement

Place an off-line instrument, connect a signal line to signal point on the instrument with index as 3.

c) Solution

Using PIDConnectPointLocation to find out X, Y coordinates first.
¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim SignalRunLocation As String
Dim objltem As LMAItem

Dim objConnector As LMConnector
Dim objlnputs As PlaceRuninputs
Dim objSymbol As LMSymbol

Dim InstrLocation As String

Dim bInSuccess As Boolean

Dim X As Double, Y As Double

SignalRunLocation = "\Instrumentation\Signal Line\Electric Binary.sym"

InstrLocation = "\Instrumentation\Off-Line\With Implied Components\Level\Discr Field Mounted LC.sym
Set objSymbol = objPlacement.PIDPlaceSymbol(InstrLocation, 0.3, 0.3)

bInSuccess = objPlacement.PIDConnectPointLocation(objSymbol, 3, X, Y)

Set objInputs = New PlaceRunInputs
objlnputs.AddPoint 0.2, 0.3
objlnputs.AddSymbolTarget objSymbol, X, Y

Set objltem = objPlacement.PIDCreateltem(SignalRunLocation)
Set objConnector = objPlacement.PIDPlaceRun(objltem, objlnputs)

‘clean up
Set objPlacement = Nothing
Set objltem = Nothing
Set objConnector = Nothing
Set objSymbol = Nothing
Set objlnputs = Nothing

116 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

83. PLACE INSTRUMENT LoOOP

a) Purpose
Use PIDCreateltem method to place an Instrument Loop in stockpile.

b) Problem Statement

Write a standalone application to place an Instrument Loop in stockpile and place a Piperun into drawing, then
associate the Instrument Loop with the Piperun.

c) Solution

¢ Example code

Dim objPlacement As Placement
Set objPlacement = New Placement

Dim datasource As LMADataSource

Set datasource = objPlacement.PIDDataSource

Dim InstrumentLocation As String

InstrumentLocation = "\Instrumentation\Off-Line\With Implied Components\Pressure\Discr Field Mounted
PC.sym"

Dim objlnstrSym As LMSymbol

Set objlInstrSym = objPlacement.PIDPlaceSymbol(InstrumentLocation, 0.2, 0.2)

'get the placed instrument
Dim objlnstr As LMInstrument
Set objlnstr = datasource.GetInstrument(objlnstrSym.ModelltemID)

‘place an InstrLoop into stockpile

Dim InstrLoopLocation As String

InstrLoopLocation = "\Instrumentation\Loops\Pressure Loop.sym"
Dim objltem As LMAItem

Set objltem = objPlacement.PIDCreateltem(InstrLoopLocation)

Dim objlnstrLoop As LMInstrLoop

Set objlInstrLoop = datasource.GetlInstrLoop(objltem.ID)
objInstrLoop.Attributes("TagSuffix™).Value = "P"
objlInstrLoop.Commit

Set objlInstrLoop = datasource.GetInstrLoop(objltem.ID)
Debug.Print objInstrLoop.Attributes("ItemTag").Value

Debug.Print "The instrument belongs to how many plantitemgroups? =" & objlnstr.PlantitemGroups.Count
objlnstr.PlantitemGroups.Add objinstrLoop.AsLMPlantltemGroup

objlInstr.Commit

Debug.Print "The instrument belongs to how many plantitemgroups? =" & objlnstr.PlantitemGroups.Count

Set objPlacement = Nothing
Set datasource = Nothing
Set objltem = Nothing

Set objlInstrLoop = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 117

84. FIND AND REPLACE LABELS

a) Purpose

Comprehensive lab to practice filter for labels, and delete existing labels, then place new labels at the same X, Y
Coordinates.

b) Problem Statement

Get collection of labels in the database, then loop through each label, and delete "\Piping\Segment
Breaks\Construction Responsibility.sym" label, and place a new "\Piping\Segment Breaks\Construction Status.sym"
label at the same X, Y Coordinate.

c) Solution

¢ Example code

Dim objPlacement As Plaice.Placement
Dim datasource As LMADataSource

Dim objFilter As LMAFilter

Dim objLabelPersists As LMLabelPersists
Dim objLabelPersist As LMLabelPersist
Dim objNewLabelPersist As LMLabelPersist
Dim X As Double, Y As Double

Dim objNewLabel As LMLabelPersist
Dim strFileName As String

Dim Points(1 To 4) As Double

Dim bInSuccess As Boolean

Dim strOLDFileName As String

Set objPlacement = New Plaice.Placement
Set datasource = objPlacement.PIDDataSource

Set objFilter = New LMAFilter

objFilter.Criteria. AddNew ("FirstOne")
objFilter.Criteria.item("FirstOne™).SourceAttributeName = "ItemStatus"
objFilter.Criteria.item("FirstOne").ValueAttribute = 1
objFilter.Criteria.item("FirstOne™).Operator = "="

objFilter.ItemType = "Piperun™

objFilter.Criteria. AddNew ("SecondOne")
objFilter.Criteria.item("SecondOne").SourceAttributeName = "SP_DrawingID"
objFilter.Criteria.item("SecondOne").ValueAttribute = objPlacement.PIDDataSource.PIDMgr.Drawing.ID

objFilter.Criteria.item("SecondOne").Operator = "=
objFilter.Criteria.item("SecondOne").Conjunctive = True

objFilter.ItemType = "LabelPersist"
Set objLabelPersists = New LMLabelPersists
objLabelPersists.Collect datasource, Filter:=objFilter

strOLDFileName = "\Piping\Segment Breaks\Construction Responsibility.sym"

118 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

strFileName = "\Piping\Segment Breaks\Construction Status.sym"
For Each objLabelPersist In objLabelPersists
If VBA.StrComp(objLabelPersist. Attributes("FileName™).Value, strOLDFileName, vbTextCompare) = 0 Then
Points(1) = objLabelPersist.LeaderVertices.Nth(1).Attributes("XCoordinate").Value
Points(2) = objLabelPersist.LeaderVertices.Nth(1).Attributes("Y Coordinate").Value
Points(3) = objLabelPersist. Attributes(*XCoordinate™).Value
Points(4) = objLabelPersist. Attributes("Y Coordinate™).Value
bInSuccess = False
bInSuccess = objPlacement.PIDRemovePlacement(objLabelPersist. ASLMRepresentation)
If binSuccess Then
Set objNewLabel = objPlacement.PIDPlaceLabel(strFileName, Points, IsLeaderVisible:=True)
End If
End If
Next

MsgBox "Done!"

Set objFilter = Nothing

Set objNewLabel = Nothing
Set objLabelPersist = Nothing
Set objLabelPersists = Nothing
Set datasource = Nothing

Set objPlacement = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 119

85. OPEN AND CLOSE AN EXISTING DRAWING

a) Purpose
Using PIDAutomation to open and close an existing drawing.

b) Problem Statement

Get collection of all drawings in the database, then loop through each drawing, open and close each drawing.

c) Solution

¢ Example code

Dim datasource As LMADataSource

Dim objPIDAutoApp As PIDAutomation.Application
Dim objPIDADrawing As PIDAutomation.Drawing
Dim objDrawing As LMDrawing

Dim objDrawings As LMDrawings

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Set objDrawings = New LMDrawings
objDrawings.Collect datasource

Set objPIDAutoApp = CreateObject("PIDAutomation.Application™)

For Each objDrawing In objDrawings
If objDrawing.Attributes("lItemStatus™).Index = 1 Then '1 stands for Active
Set objPIDADrawing = objPIDAutoApp.Drawings.OpenDrawing(objDrawing. Attributes("Name"))
If Not objPIDADrawing Is Nothing Then
MsgBox "Drawing " & objDrawing.Attributes("Name™).Value & " is opened!"
objPIDADrawing.CloseDrawing True
End If
End If
Next

objPIDAutoApp.Quit

Set objPIDAutoApp = Nothing
Set objPIDADrawing = Nothing
Set objDrawing = Nothing

Set objDrawings = Nothing

120 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

86. CREATE, OPEN AND CLOSE A NEW DRAWING

a) Purpose
Using PIDAutomation to create, open and close a new drawing.

b) Problem Statement

Create, open and close a new drawing until one of your Units.

c) Solution

¢ Example code

Dim datasource As LMADataSource

Dim objPIDAutoApp As PIDAutomation.Application
Dim objPIDADrawing As PIDAutomation.Drawing
Dim PlantGroupName As String

Dim TemplateFileName As String

Dim DrawingNumber As String

Dim DrawingName As String

If Not bInUsePIDDatasource Then

Set datasource = New LMADataSource
Else

Set datasource = PIDDataSource
End If

Set objPIDAutoApp = CreateObject("PIDAutomation.Application™)

PlantGroupName = "Unit01"
‘considering accessing T_OptinSetting to read the template files path, which will be more flexible
TemplateFileName = "\\Your Plant Structure \P&ID Reference Data\template files\C-Size.pid"
DrawingNumber = "TestCreateNewDrawingl"
DrawingName = "TestCreateNewDrawingl"
Set objPIDADrawing = objPIDAutoApp.Drawings.Add(PlantGroupName, TemplateFileName, DrawingNumber,
DrawingName)
If Not objPIDADrawing Is Nothing Then
MsgBox "Drawing " & objPIDADrawing.name & " is opened!"
objPIDADrawing.CloseDrawing True
End If

objPIDAutoApp.Quit
Set objPIDAutoApp = Nothing
Set objPIDADrawing = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 121

87. COMPREHENSIVE AUTOMATION LAB

a) Purpose
To practice a comprehensive auatomation lab, including LLAMA, Placement and PIDAutomation.

b) Problem Statement

Write a standalone application to create a new drawing, then place an assembly into the drawing, then modify the
piperuns placed by the assembly, set TagSequenceNo to 100. Then, close the drawing.

c) Solution

¢ Example code

Dim datasource As LMADataSource

Dim objPIDAutoApp As PIDAutomation.Application
Dim objPIDADrawing As PIDAutomation.Drawing
Dim PlantGroupName As String

Dim TemplateFileName As String

Dim DrawingNumber As String

Dim DrawingName As String

Dim objPlacement As Placement

Dim AssemblyLocation As String

Dim objltems As LMAItems

Dim objltem As LMAItem

Dim objConnector As LMConnector

Dim objPiperun As LMPipeRun

Set objPIDAutoApp = CreateObject("PIDAutomation.Application™)

PlantGroupName = "Unit01"
‘considering accessing T_OptinSetting to read the template files path, which will be more flexible
TemplateFileName = "\\Your Plant Structure \P&ID Reference Data\template files\E-Size.pid"
DrawingNumber = "TestCreateNewDrawing2"
DrawingName = "TestCreateNewDrawing2"
Set objPIDADrawing = objPIDAutoApp.Drawings.Add(PlantGroupName, TemplateFileName, DrawingNumber,
DrawingName)
If Not objPIDADrawing Is Nothing Then
Set objPlacement = New Placement
Set datasource = objPlacement.PIDDataSource
AssemblyLocation = "\Assemblies\Automation.pid"
'place assembly
Set objltems = objPlacement.PIDPlace Assembly(AssemblyLocation, 0.2, 0.2)
‘change TagSequenceNo
For Each objltem In objltems
If objltem.ltemType = "Connector" Then
Set objConnector = datasource.GetConnector(objltem.ID)
If objConnector.ModelltemObject. AsSLMAIltem.ltemType = "PipeRun" Then
Set objPiperun = datasource.GetPipeRun(objConnector.ModelltemID)
objPiperun.Attributes("TagSequenceNo").Value = 100
objPiperun.Commit
End If
End If
Next
objPIDADrawing.CloseDrawing True

122 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

End If

objPIDAutoApp.Quit
Set objPIDAutoApp = Nothing
Set objPIDADrawing = Nothing

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 123

88. CREATE A CALCULATION PROGRAM

Purpose

Enable the Calculation button at the customized property “XY Coordinates” at Modelltem level to show X, Y
coordinates of the symbol in format of X/Y.

b) Problem Statement

Write an Active-X dll implementing the DoCalculate method to read the X, Y coordinates of a Symbol to the
customized property ““XY Coordinates” at Modelltem level. The customized property ““XY Coordinates” should be
added at Modelltem level, with datatype is String, format is Variable Length, Maximum Length is 40, and Category
is Accessories.

c) Solution

¢ Example code

Implements ILMForeignCalc

Private Function ILMForeignCalc_DoCalculate(datasource As Llama.LMADataSource, _
items As Llama.LMAItems, PropertyName As String, Value As Variant) As Boolean

ILMForeignCalc_DoCalculate = ShowXY Coordinates(datasource, items, Value, PropertyName)
End Function

Private Function ShowXY Coordinates(datasource As Llama.LMADataSource, _
items As Llama.LMAItems, Value As Variant, PropertyName As String) As Boolean

Dim Item As LMAIltem
Dim objSymbol As LMSymbol
Dim objEquipment As LMEquipment

‘check if the selected Property is "XYCoordinates", then copy value from X, Y coordinates
'to it

ShowXY Coordinates = False
For Each Item In items
If PropertyName = "XYCoordinates" Then
On Error Resume Next
Set objEquipment = datasource.GetEquipment(Item.Id)
On Error GoTo 0
If Not objEquipment Is Nothing Then
Set objSymbol = datasource.GetSymbol(datasource.GetModelltem(ltem.1d).Representations.Nth(1).1d)
Value = objSymbol.Attributes("XCoordinate™).Value & "/" &
objSymbol.Attributes("Y Coordinate™).Value
End If
End If
Next
ShowXY Coordinates = True

‘clean up
Set Item = Nothing

Set objSymbol = Nothing

124 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

Set objEquipment = Nothing
End Function

Save the Project and enter the ProgID in the Calculation ID field of the XY Coordinates Attribute in Modelltem
through the DataDictionary Manager. Restart SPPID to find the button. Start the Project in Debug mode and then
click on the button to step through your code. Then, compile the project, and click on the button again.

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 125

89. CREATE A VALIDATEPROPERTY PROGRAM

Purpose
Enable the Property validation at the ActuatorType attribute of InlineComp

b) Problem Statement

Write an Active-X dll implementing the DoValidateProperty method for placing corresponding actuator for an
instrument valve when property ActuatorType is entered or changed.

c) Solution

¢ Example code

Implements ILMForeignCalc

Private Function ILMForeignCalc_DoValidateProperty(datasource As Llama.LMADataSource, _
items As Llama.LMAItems, PropertyName As String, Value As Variant) As Boolean

ILMForeignCalc_DoValidateProperty = AddActuator(datasource, items, PropertyName, Value)
End Function

‘add actuator when property actuator type is changed on instrument
Private Function AddActuator(datasource As Llama.LMADataSource, _
items As Llama.LMAItems, PropertyName As String, Value As Variant) As Boolean

On Error GoTo ErrHandler

Dim Item As LMAIltem

Dim objPlacement As Placement
Dim strFilePath As String

Dim x As Double

Dimy As Double

Dim objSym As LMSymbol
Dim objSymbol As LMSymbol

Dim objlnstr As LMInstrument

Dim objPlantltem As LMPlantltem
Dim objlnstrActuator As LMInstrument
Dim bInDelete As Boolean

Dim bInNeedAdd As Boolean

Set objPlacement = New Placement
AddActuator = False
For Each Item In items
If Item.ItemType = "Instrument™ And PropertyName = "ActuatorType" Then
If Item.Attributes("InstrumentClass").Value = "Control valves and regulators™ Then
'get the instrument
Set objlnstr = datasource.GetInstrument(Item.Id)
If objInstr.ChildPlantltemPlantltems.Count = 0 Then
bInNeedAdd = True
Else

126 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

If objInstr.ChildPlantltemPlantitems.Count = 1 Then
bInDelete = objPlacement.PIDDeleteltem(objinstr.ChildPlantitemPlantitems.Nth(1). ASLMAIltem)
bInNeedAdd = True
Else
MsgBox "Wrong, there are more than 1 Child for this instrument!"
End If
End If
If bInNeedAdd Then
Select Case Value
Case "Diaphragm"
strFilePath = "\Instrumentation\Actuators\Diaph Actuator.sym"
Case "Single acting cylinder™
strFilePath = "\Instrumentation\Actuators\Single Action Cyl Act.sym"
Case "Pilot operated cylinder"
strFilePath = "\Instrumentation\Actuators\Pilot Operated Cyl Act.sym"
Case "Motor"
strFilePath = "\Instrumentation\Actuators\Motor Actuator.sym"
Case "Digital"
strFilePath = "\Instrumentation\Actuators\Digital Actuator.sym"
Case "Electro-hydraulic"
strFilePath = "\Instrumentation\Actuators\Electric-Hydraulic Act.sym"
Case "Single solenoid"
strFilePath = "\Instrumentation\Actuators\Solenoid Actuator.sym"
Case "Single solenoid w/reset"
strFilePath = "\Instrumentation\Actuators\Solenoid Act w-Man Reset.sym"
Case "Double solenoid"
strFilePath = "\Instrumentation\Actuators\Double Solenoid Act.sym"
Case "Pilot"
strFilePath = "\Instrumentation\Actuators\Pilot Actuator.sym"
Case "Weight"
strFilePath = "\Instrumentation\Actuators\Weight Actuator.sym"
Case "Manual"
strFilePath = "\Instrumentation\Actuators\Manual Actuator.sym"
Case "Spring"
strFilePath = "\Instrumentation\Actuators\Spring Actuator.sym"
Case "Capacitance sensor"
strFilePath = "\Instrumentation\Actuators\Capacitance Sensor Act.sym"
Case "Ball float"
strFilePath = "\Instrumentation\Actuators\Ball Float Actuator.sym"
Case "Displacement float"
strFilePath = "\Instrumentation\Actuators\Displacement Float Actuator.sym"
Case "Paddle wheel"
strFilePath = "\Instrumentation\Actuators\Paddle Wheel Actuator.sym"
Case "Diaphragm Rotary Actuator"
strFilePath = "\Instrumentation\Actuators\Diaph Actuator.sym"
Set objSym = datasource.GetSymbol(objlnstr.Representations.Nth(1).1d)
x = objSym.XCoordinate
y = 0bjSym.YCoordinate
Case Else
'do nothing
strFilePath ="
End Select

If strFilePath <> """ Then
Set objSym = datasource.GetSymbol(objlnstr.Representations.Nth(1).1d)

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 127

x = objSym.Attributes("XCoordinate™)
y = objSym.Attributes("Y Coordinate™)
Set objSymbol = objPlacement.PIDPlaceSymbol(strFilePath, X, y)
targetitem:=o0bjSym.AsLMAIltem)
Else
MsgBox "Couldn't find corresponding Actuator"
End If
End If
AddActuator = True
End If
End If

Next

‘clean up
Set objPlacement = Nothing
Set Item = Nothing
Set objSym = Nothing
Set objSymbol = Nothing
Set objInstr = Nothing
Set objPlantltem = Nothing
Set objInstrActuator = Nothing

Exit Function
ErrHandler:

MsgBox "Error happened: " & Err.Description
‘clean up

Set objPlacement = Nothing

Set Item = Nothing

Set objSym = Nothing

Set objSymbol = Nothing

Set objInstr = Nothing

Set objPlantltem = Nothing

Set objInstrActuator = Nothing
End Function

Save the Project and enter the ProgID in the Validation ID field of the ActuatorType Attribute in InlineComp
through the DataDictionary Manager. Restart SPPID. Start the Project in Debug mode and then select different
Actuators through ActuatorType property to step through your code. Then, compile the Project, and change the
property again.

128 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

90. CREATE A VALIDATEITEM PROGRAM

Purpose

Enable the Item validation when placing PipeRun.

b) Problem Statement

User added a new property “SystemCode” for Drawing, user want this property value to be copied to new Piperuns
when placing them. Write an Active-X dll implementing the DoValidateltem method when placing PipeRun to make
the copy from Drawing to PipeRun. You will notice a problem the a ProglID has existed for the PipeRun, learning
how to call another validation program through your code.

c) Solution

¢ Example code

Implements ILMForeignCalc

Private Function ILMForeignCalc_DoValidateltem(DataSource As Llama.LMADataSource, _
Items As Llama.LMAItems, Context As ENUM_LMAValidateContext) As Boolean

Dim PlantltemValidate As ILMForeignCalc

'Call PlantltemValidation.Validate
Set PlantltemValidate = CreateObject("PlantltemValidation.Validate™)
If Not PlantltemValidate Is Nothing Then
ILMForeignCalc_DoValidateltem = PlantitemValidate.DoValidateltem(DataSource, Items, Context)
End If

‘call function to place actuator
ILMForeignCalc_DoValidateltem = CopySystemCode(DataSource, Items, Context)

End Function

Private Function CopySystemCode(DataSource As Llama.LMADataSource, _
Items As Llama.LMAItems, Context As ENUM_LMAValidateContext) As Boolean
Dim objLMAItem As LMAItem
Dim objDrawing As LMDrawing
Dim objModelltem As LMModelltem

If Context = LMAValidateCreate Then
For Each objLMAItem In Items
Set objModelltem = DataSource.GetModelltem(objLMAItem.Id)
Set objDrawing = objModelltem.Representations.Nth(1).DrawingObject
objLMAItem.Attributes(" SystemCode™).Value = objDrawing.Attributes(" SystemCode™).Value
objLMAItem.Commit
Next
End If
End Function

Save the Project and enter the ProgID in the Validation Program field of the PipeRun through the DataDictionary
Manager — DataBase Item Types. Restart SPPID. Start the Project in Debug mode and then place an PipeRun to
step through your code. Then, compile the Project, and place PipeRun again.

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 129

91. CREATE A DRAWING VALIDATE PROGRAM

a) Purpose
Enable the Drawing validation when a drawing event is triggered.
b) Problem Statement

System admin wants to log the time user name when a drawing is opened, closed or printed. This example writes an
Active-X dll (DrawingValidation.dll) implementing the DoValidateltem method when ac drawing event (Open,
Close, Print, Create, Modify) is detected. The ProgID, DrawingValidation.Validate needs to be assigned to
Drawing object in DataDictionary Manage -> DataBase Itemtypes table.

c) Solution

¢ Example code
Option Explicit

Implements ILMForeignCalc
Implements IPrintValidation

Private Function ILMForeignCalc_DoCalculate(DataSource As Llama.LMADataSource, ltems As
Llama.LMAItems, PropertyName As String, Value As Variant) As Boolean

End Function

'Creates a new file each time an event is fired
'File name is context type dependent
'‘Code has also been added for AutoGap on Drawing Close Event

Private Function ILMForeignCalc_DoValidateltem(DataSource As Llama.LMADataSource, Items As
Llama.LMAItems, Context As LMForeignCalc.ENUM_LMAValidateContext) As Boolean

Dim sFileName As String
Dim strCurrentUser As String
Dim strDwgName As String
On Error GoTo ErrHndl

Select Case Context

Case LMForeignCalc.ENUM_LMAValidateContext.LMAValidateOpen
sFileName = "Drawing Opened

Case LMForeignCalc.ENUM_LMAValidateContext.LMAValidateClose
sFileName = "Drawing Closed "
'‘Begin AutoGap on active drawing
" Need to reference AutoGapAll.dll and RAD2d.dat for this example
Dim auto As New AutoGapAll.AutoGapAllCmd
auto.GapAll DataSource.PIDMgr.Application.RADApplication
'End AutoGap on active drawing

Case LMForeignCalc.ENUM_LMAValidateContext.LMAValidateCreate
sFileName = "Drawing Created

Case LMForeignCalc.ENUM_LMAValidateContext.LMAValidateDelete
sFileName = "Drawing Deleted "

Case LMForeignCalc.ENUM_LMAValidateContext.LMAValidateModify
sFileName = "Drawing Modified

130 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

End Select

‘Create file
If Len(sFileName) > 0 Then CreateFile sFileName, Items

ILMForeignCalc_DoValidateltem = True
Exit Function

ErrHndl:
MsgBox Err.Description
ILMForeignCalc_DoValidateltem = False

End Function

'Create file for the Context Type (Create, Delete, Open, Close, Modify, or Print) in the "Environ("Temp")" Directory
and log drawing info.
'Create the "Environ("Temp")" Directory if doesn't already exist.

Private Sub CreateFile(sFileName As String, Optional Items As Llama.LMAItems)

Dim IFileNum As Long
Dim fso As New FileSystemObject
Dim sFolder As String

sFolder = Environ("Temp")
On Error GoTo ErrHndl

'Create folder if doesn't exist

If Not fso.FolderExists(sFolder) Then
fso.CreateFolder sFolder

End If

sFileName = sFolder & "\" & sFileName & ".txt"

IFileNum = FreeFile

Dimf, fs

Set fs = CreateObject("Scripting.FileSystemObject™)
Set f = fs.OpenTextFile(sFileName, ForAppending, -2)

f.WriteLine (DateTime.Time)

f.WriteLine (" Item Type: " & Items.Nth(1).ItemType)
f.WriteLine (" Name: " & Items.Nth(1).Attributes("Name"))
f.WriteLine (" UserName: " & Environ("UserName") & vbCrLf)
f.Close

Set fs = Nothing

Set fso = Nothing

Exit Sub

ErrHndl:
Err.Raise Err.Number, "Validate.CreateFile", Err.Description

End Sub

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 131

Private Function ILMForeignCalc_DoValidateProperty(DataSource As Llama.LMADataSource, ltems As
Llama.LMAItems, PropertyName As String, Value As Variant) As Boolean
End Function

Private Sub ILMForeignCalc_DoValidatePropertyNoUI(DataSource As Llama.LMADataSource, Items As
Llama.LMAItems, PropertyName As String, Value As Variant)
End Sub

'Create a new file each time a print event is fired

Private Function IPrintValidation_DoValidatePrint(ByVal DrawingSPID As String, ByVal DrawingName As String,
DataSource As Llama.LMADataSource, Items As Llama.LMAItems) As Boolean
On Error GoTo ErrHndl
If IPrintValidation_UseDataSourceOnPrint Then
CreateFile "Drawing Printed with DB ", Items
Else
CreateFile "Drawing Printed "
End If
IPrintValidation_DoValidatePrint = True
Exit Function

ErrHndl:
IPrintValidation_DoValidatePrint = False
End Function

Private Property Get IPrintValidation_UseDataSourceOnPrint() As Boolean
IPrintValidation_UseDataSourceOnPrint = True
End Property

132 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

OPTIONAL LABS

1. WRITE A SIMPLE VB CODE AND DEBUG IT

a) Purpose
To relate Visual Basic to procedural languages

b) Problem Statement

Create a “Hello World” program using the Sub main().

c) Solution

¢ Open a Standard Executable in Visual Basic

From the Start menu, click on Programs folder/Microsoft Visual Basic 6./Visual Basic 6.0.
Open a Standard.exe project.

Select the default form and delete it through Project\Remove Form1.

Add a Module to the project through Project\Add Module.

Set Projectl Properties show Sub Main as the start-up procedure. Select Project\Project
Properties to get the dialog box.

¢ Enter the following code:

Sub Main()
Debug.print “Hello World”
Msgbox “Hello World”
End Sub

¢ Save all the files associated with the Project

agrwONE

¢ Step through the program in Debug mode

¢ Compile and run the program

2. WRITE A SIMPLE VB CODE USING A FORM

Purpose

To introduce the object-oriented features of Visual Basic
b) Problem Statement

Create a “Hello World” program using Form-level code.
c) Solution

¢ Open a Standard Executable in Visual Basic

1. From the Start menu, click on Programs folder/Microsoft Visual Basic 6./Visual Basic 6.0.
2. Open a Standard.exe project.
3. Create Command button on the default form.

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 133

4. Double-click the Command button to simulate the click Event and open the definition for the Click
Event.

¢ Enter the following code:

Private Sub Command1_Click()
MsgBox "Hello World"
End Sub

¢ Save all the files associated with the Project
¢ Step through the program in Debug mode

¢ Compile and run the program
O

Change the caption and name of the Command button and repeat the exercise

3. USE THE OBJECT BROWSER TO VIEW AUTOMATION OBJECTS

Purpose

To become familiar with looking up libraries in Visual Basic

Problem Statement

Use the Object Browser to examine the classes, methods, and properties of the Microsoft Excel library and the
SmartPlant P&ID library.

Solution

¢ Open a Standard Executable in Visual Basic

1. From the Start menu, click on Programs folder/Microsoft Visual Basic 6./Visual Basic 6.0.
2. Open a Standard.exe project.

¢ Reference Microsoft Excel into the Project
3. From the Project/References, select Microsoft Excel 8.0 Object Library

¢ Browse the Microsoft Excel library using the Object Browser

4. Click on the Object Browser icon and select Excel in the pull down list.
5. Click on each class on the left hand side to view its methods and properties on the right.
6. Click on each method or property for more information on them.

¢ Reference Llama into the Project
7. From the Project/References, select Intergraph SmartPlant P&ID Logical Model Automation

¢ Browsethe Llama library using the Object Browser

134 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

4. WRITE VB CLIENT APPLICATION TO ACCESS MICROSOFT EXCEL’S AUTOMATION
OBJECTS

a) Purpose
To practice writing an Active-X client component to access an Active-X servernents

b) Problem Statement

Write an Active-X client executable to interact with Microsoft Excel and perform the following operations:

Create a workbook and assign a value to a range of cells and save the workbook. Re-open the workbook and
examine the contents of the cells.

(Note: Excel Application contains Workbooks which contain Worksheets. Each Worksheet contains Ranges, which
contain Columns and Rows.)

c) Solution

Open a Standard Executable in Visual Basic

From the Start menu, click on Programs folder/Microsoft Visual Basic 6./Visual Basic 6.0.
Open a Standard.exe project.
Create a Reference to the Excel object library

Add code to start up Excel Application and make it visible

¢
1
2
3
0
4 Use the CreateObject method to create an instance of Excel.Application

5. Make Excel Application visible by setting the boolean ‘Visible’ property to True

6. Examine the Excel instance visually. The Application may not have any open workbooks.
0

7

8

9

O

1

1

Expand code to Add a new workbook

Use the ‘Add’ method in the Workbooks object in Excel to add a workbook.

Create an object variable to point to the new workbook.

Examine the Excel instance visually. The Workbook comes with 3 worksheets.
Expand code to select arange in a worksheet

Use the Worksheets method in the Workbook object and set a variable pointing to “Sheet1”.
Create a range in Sheet1 covering A1 to E10 using the ‘range’ method of the Worksheet object
and set a variable pointing to it.

¢ Include code to set avalue in the range

= o

12. Use the methods in the Range object and print out the number of columns and rows in the range.
13. Use the ‘Value’ property of the Range object and assign a value to every cell in the range.

14. Examine the Excel Application visually.

¢ Save and close the workbook

15. Use the SaveAs method of the workbook to save the file. Give a filename as argument.

16. Use Close method to close the workbook.

17. Examine the Excel Application visually.

¢ Re-open the Excel Workbook and examine the cells
18. Use the Open method in the Workbooks object of ExcelApplication.

19. Select the Workbook from the Workbooks collection by name and assign a variable to it.
20. Select Sheet1 from the Worksheets and examine the ‘Value’ of cell (10, 5) using the Cells
property.

¢ Example Code

Dim objExcel As Excel.Application

Set objExcel = CreateObject("Excel.Application™)

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 135

objExcel.Visible = True

Dim xIWorkbook As Excel.Workbook
Set xIWorkbook = objExcel.Workbooks.Add

Dim xIWorksheet As Excel.Worksheet
Set xIWorksheet = xIWorkbook.Worksheets("SHEET1")

Dim range As range
Set range = xIWorksheet.range("Al", "E10")
range.Value = 10

Dim strFileName As String
strFileName = Environ("TEMP") & "\Excel1.xIs"

objExcel.Workbooks(1).SaveAs (strFileName)
objExcel.Workbooks(1).Close

objExcel.Workbooks.Open (strFileName)
Set xIWorkbook = objExcel.Workbooks("Excell.xIs")
Debug.Print xIWorkbook.Sheets.Count

Set xIWorksheet = xIWorkbook.Sheets("SHEET1")
Debug.Print xIWorksheet.name
Debug.Print xIWorksheet.Cells(10, 5)

xIWorkbook.Close True
objExcel.Quit

Set xIWorksheet = Nothing
Set xIWorkbook = Nothing
Set objExcel = Nothing

136 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

5. CREATE AN ACTIVE-X SERVER AND A CLIENT APPLICATION

Purpose

To practice writing an Active-X server component that can be accessed by a client application

b) Problem Statement

Write an Active-X server in Visual Basic containing a class called Customer.

Provide the Customer class with Name, Address, and Age properties. Create Property procedures to set and get the
values of these properties.

In the Age property, ensure that no age less than zero (0) can be assigned. The Age property should use a default
value of zero in such cases.

Create a Sub called Display to display the whole Name, Address, and Age of the customer in a single message box.

c) Solution

Open a Active-X DLL in Visual Basic

From the Start menu, click on Programs folder/Microsoft Visual Basic 6./Visual Basic 6.0.
Open a Active-X DLL project.

Create a Class Module

Select Project\Add Class Module

Rename the Class Module to “Customer”

Dimension three private variables: strName as string, strAddress as string, intAge as integer

Create three Property procedures with Get and Let definitions: Name, Address, Age.

In the Let procedure for the Age property, include an IF structure to ensure that the age is never
negative.

Create Sub called Display () that will concatenate the Name, Address and Age properties and displays
it in @ message box. [Use Msgbox (...) to display]

¢ Create a executable application reference the Active-X DLL

9. Create a executable application reference the Active-X DLL

10. Create a form in the executable application

11. Create a command on the form and double click it to enter code into its click event.

12. Dimension and create three instances of the Customer class. Use the Name, Address, and Age
properties to input data into the object. Use the Display subroutine to display the combined
information.

NoA® O NpE O

©

¢ Example Code
Sample code in Class Customer:

Dim strname As String

Dim strAddress As String

Dim intAge As Integer

Public Property Get name() As String
name = strname

End Property

Public Property Let name(vdata As String)
strname = vdata

End Property

Public Property Get Address() As String
Address = strAddress

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 137

End Property

Public Property Let Address(ByVal vNewValue As String)
strAddress = vNewValue
End Property

Public Property Get Age() As Integer
Age = intAge
End Property

Public Property Let Age(ByVal vNewValue As Integer)

If vNewValue >= 0 Then

intAge = vNewValue

End If
End Property
Public Sub Display()

MsgBox "Name=" & strname & " Address=" & strAddress & " Age=" & intAge
End Sub

Sample code in Client application:

Dim objl As Customer
Dim obj2 As Customer
Dim obj3 As Customer

Set obj1 = New Customer
Set obj2 = obj1
Set obj3 = New Customer

obj1.Address = "309 Ball St., College Station, TX"
objl.name = "Tom"
obj1.Age =20

obj2.name = "Dave"
obj3.name = "David"
obj3.Age =-100

Debug.Print obj1.name
Debug.Print obj2.name
Debug.Print obj3.name

obj1.Display
obj2.Display
obj3.Display

Set obj1 = Nothing
Set obj2 = Nothing
Set obj3 = Nothing

138 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

6. CREATE AN INTERFACE, AN IMPLEMENTATION, AND A CLIENT APPLICATION

Purpose

To practice writing Active-X server components which support interfaces

Problem Statement

Create an Active-X interface, its implementation, and a client driver program to use the two libraries.

Solution

¢ Create the Interface Project

1. Create an Active-X dll project called Interface.

2. Create two class modules and name them IAccount and IPurchase.

3. |Account has one function AccountBalance and IPurchase has one function LastPurchaseAmount,

BoOoo~NoO & A~

11.

12.

O

13.
14.
15.
16.

17.
18.

0

0.

each returning a double datatype.
Save the project and run it.

Create a project called Implementation with a single class called CreditCard

Create an Active-X dll project called Implementation.

Reference the Interface dll.

Open the class module and name it CreditCard.

Implement the two interfaces in the class.

Create two private variables to hold the lastPurchaseAmount and the accountBalance.

Add a property called paymentAmount which reduces the account balance by the given amount in the
Let definition.

Add a second property called PurchaseAmount which increases the account balance by the given
amount and saves the given amount as the lastPurchaseAmount, in the Let definition.

Implement the two functions from the interfaces to return the values of the two appropriate variables.

Create a project called Client with a Form

Create a standard executable project called Client.

Reference the two dlis created above.

Dimension one variable each for the three classes developed above.

Create a new creditcard object and assign it some payment and purchase using the creditcard
object’s properties.

Set the two interface variables to point to the creditcard object.

Print out the AccountBalance and LastPurchaseAmount using the two variables.

Example Code

IAccount interface:
Public Function AccountBalance() As Double

End Function

IPurchase Interface:
Public Property Get LastPurchaseAmount() As Double

End Property

Implementation Class: CreditCard

Option Explicit

Implements 1Account
Implements IPurchase

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 139

Private mvarLastPurchaseAmount As Double
Private mvarAccountBalance As Double

Private Function 1Account_AccountBalance() As Double
IAccount_AccountBalance = mvarAccountBalance
End Function

Private Property Get IPurchase_LastPurchaseAmount() As Double
IPurchase_LastPurchaseAmount = mvarLastPurchaseAmount
End Property

Public Property Let PurchaseAmount(vdata As Double)
mvarLastPurchaseAmount = vdata
mvarAccountBalance = mvarAccountBalance + vdata

End Property

Public Property Let paymentAmount(vdata As Double)
mvarAccountBalance = mvarAccountBalance - vdata
End Property

Public Function AddFinanceCharge(percent As Double) As Double
Dim interest As Double
interest = percent / 100# * mvarAccountBalance
mvarAccountBalance = mvarAccountBalance - interest
AddFinanceCharge = interest

End Function

Client Driver Program:
Private Sub Commandl1_Click()
Dim accountlnterface As 1Account
Dim purchaselnterface As IPurchase

Dim creditCard As creditCard

Set creditCard = New creditCard
creditCard.PaymentAmount = 500.34
creditCard.PurchaseAmount = 400#

Set accountlnterface = creditCard

Set purchaselnterface = creditCard

Debug.Print accountlnterface.AccountBalance
Debug.Print purchaselnterface.LastPurchaseAmount

creditCard.AddFinanceCharge 10.9
Debug.Print accountlInterface.AccountBalance
Debug.Print purchaselnterface.LastPurchaseAmount

End Sub

140 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

7. MODIFY PROPERTY BASED ON CONSTRUCTION STATUS

Purpose
Get familiar with LLAMA
Problem Statement

(1) Place two vessels, one with Construction Status = NEW, the other with Construction Status = EXISTING

(2) Write an EXE to get two vessels, modify Description property to “New Construction Status” if the Construction
Status = NEW, and modify Description property to “Existing Construction Status” if the Construction Status =
EXISTING.

Solution

¢ Example code

8. SERACH ITEMS AND MODIFY PROPERTY

a) Purpose
Get familiar with LLAMA
b) Problem Statement

(1) Place some valves with different types, make sure some of them are Ball Valves
(2) Write an EXE to filter for Ball valves only, and set Nominal Diameter to 2” if the original value is not set
yet.

c) Solution

¢ Example code

9. MODIFY CASE PROCESS DATA

a) Purpose
Get familiar with LLAMA
b) Problem Statement

(1) Place a Vessel, assign some process data to the vassal, such as max operating pressure, temperature, etc. When
enter value for process data, intentionally some use default unit, some not.

(2) Write an EXE to access this vessel, and change the process data’s display value to project default format if not
yet.

c) Solution

Example code

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 141

10. FIND IMPLIED ITEMS AND MODIFY THEIR PROPERTY

a) Purpose
Get familiar with LLAMA
b) Problem Statement

(1) Place some off-line instruments with implied components
(2) Write an EXE to filter for implied items, check if it is an Instrument Root Valve, if so, set its Nominal Diameter
to 27

c) Solution

¢ Example code

11. COUNT NOZZLES ON A VESSEL

a) Purpose
Get familiar with LLAMA
b) Problem Statement

(1) Place a vessel, and place several nozzles on it
(2) Write an EXE to count nozzles on the vessel, and set the vessel’s Description property value to “Total number of
nozzles on this vessel is: <the count of nozzles>"

c) Solution

¢ Example code

12. SEARCH ITEMS ACTIVE DRAWING STOCKPILE

a) Purpose
Get familiar with LLAMA
b) Problem Statement

(1) Place some vessels in the drawing, then remove some of them to drawing stockpile
(2) Write an EXE to filter for all vessels in drawing stockpile, and set the vessel’s Description property value to “In
drawing stockpile of the drawing: <DrawingName>".

c) Solution

Example code

142 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

13. NAVIGATE FROM OFF-LINE INSTRUMENT TO PROCESS PIPERUN

a) Purpose
Get familiar with LLAMA
b) Problem Statement

(1) Place an off-line instrument, connect the instrument to the process PipeRun with Connect-To-Process line.
(2) Write an EXE to navigate from off-line instrument the process PipeRun, set instrument’s Description property
value to “Connected Process PipeRun’s Item tag is <Piperun ItemTag>.

c) Solution

Example code

14. FIND OPC AND FROM/TO

i. Purpose
Get familiar with LLAMA

b) Problem Statement

(1) place Vessel, with two nozzles on it and then draw a piperun from one of the nozzles and place a OPC to the
open end of the piperun, then open another drawing, place a vessel with two nozzles on it, and then draw a piperun
from one of the nozzles, and then place the pairedOPC to the piperun,

(2) write a standalone application start from the vessel in first drawing, navigate from vessel, to nozzle, to piperun, to
OPC,

(3) continue the navigation, to pairedOPC (in other drawing), to piperun, to nozzle, and to the vessel.

(4) place a valve on the piperun in first drawing, then repeat step (2) & (3)

(5) place a two more nozzles on the vessel in second drawing, place an off-line instrumentation with implied
components, such a Discr Field Mounted LC, then use SignalLine-Connect to Process to link nozzle with
Instrumentation, navigate from vessel in first drawing until find the implied component (which is valve)

(6) continue the navigation from implied component to the vessel in second drawing

(7) change the property SupplyBy to “By A” for the vessel, nozzle, and piperun

(8) integrate this function to a validation code, which will be run when SupplyBy property of vessel is changed. (due
to the limitation of the code, you may start from the vessel in first drawing)

c) Solution
¢ Example code
15. How 10 CHECK IF A DRAWING BELONG TO ACTIVE SITE

a) Purpose

How to determine if a drawing is belong to the active site in workshare environment? Or just a read only drawing?

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 143

b) Problem Statement

Create a workshare environment, with host site and satellite site, publish a drawing from host to satellite, where the
drawing is read-only. Write a code to check if the drawing is read-only?

c) Solution
1. Get the PlantGroup object for the root item, which is the plant, then get the Workshare Site ID from the
PlantGroup.

2. Get the drawing’s DrawingSite object, then get the Workshare Site ID from DrawingSite.
3. Compare two Workshare Site IDs, if they are same, which means the drawing belongs to the active site,
otherwise, it’s a read-only drawing.

¢ Example code

16. LABEL FIND AND REPLACE UTILITY

a) Purpose
To apply the knowledge you learned in this cource for both LLAMA and PLACEMENT

b) Problem Statement

Write a standalone application to obtain all Vessel on a drawing, then check if the EquipmentID label is placed on
the Vessel or not, if not, place the EquipmentID label to the Vessel, if the EquipmentID label is placed already,
replace the label. In this way, the latest EquipmentID label will be placed on each Vessel.

c) Solution

1. Use LMAFilter to find all Vessels in current active drawing.
2. Use PIDPlacelLabel to place new label.

3. Use PIDReplaceLabel to replace existing label.

0

Example code

17. AUTOMATICALLY CREATE NEW DRAWINGS

a) Purpose
To apply the knowledge you learned in this cource for LLAMA, PLACEMENT and PIDAutomation.

b) Problem Statement

Write a standalone application to create a new drawing, then place two assemblies into the new drawing (assemblies
are pre-defined, with one assembly has a piperun with one open end, and the other assembly has an nozzle without
any piperun connected). Then place a new Piperun to connect the open end of the piperun to the nozzle, and use
PIDAutoJoin method to auto join the existing piperun and new placed piperun.

144 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

c) Solution

¢ Example code

18. NC/NO VALVES REPLACEMENT UTILITY

a) Purpose
To apply the knowledge you learned in this cource for both LLAMA and PLACEMENT
b) Problem Statement

Considering following workflow: In the beginning of project, same piping valve, for example ball valve, is used as
for Normal Close (NC) and Normal Open (NO), by setting the attribute “Opening Action”, to NC or NO. Later in the
project, it is required to have different symbols for NC or NO valves. It is OK to keep the original valve as NO, but
needs a new symbol for NC. Problem: how to update all placed valves in different drawings?

Write a standalone application to search all placed valves, using ball valve for example, then depends on its
“Opening Action” is NC or NO, if it is NC, then to replace it with new valve.

You may start the project by open a drawing, and run the utility against the active drawing only. Later, enhance the
utility to have function to batch process all drawings.

You need to create one new ball valve symbol as NC for this lab.

c) Solution

¢ Example code

19. CALCULATION VALIDATION (1)

a) Purpose
Get familiar with Calculation Validation
b) Problem Statement

Write an Active-X dll implementing the DoCalculate method for creating a value for the Name of Vessel. Ask user
to enter the name they want to give to the vessel, then combine with SP_ID of the vessel to obtain the final name of
the vessel.

c) Solution

¢ Example code

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 145

20. CALCULATION VALIDATION (2)

a) Purpose
Get familiar with Calculation Validation
b) Problem Statement

Write an Active-X dll implementing the DoCalculate method for placing an assembly. Create a new property called
“Place Assembly” for PipingComp, placing an assembly when user click the Calculation button on the “Place
Assembly” field and the item type is “Valve”. Place the assembly somewhere outside of the border.

c) Solution

¢ Example code

21. PROPERTY VALIDATION (1)

a) Purpose
Get familiar with Property Validation
b) Problem Statement

Write an Active-X dll implementing the DoValidateProperty method for populating the value for the Name of Vessel
when user enter the value for TagPrefix of vessel. Vessel name is combination of TagPrefix and SP_ID

c) Solution

¢ Example code

22. PROPERTY VALIDATION (2)

a) Purpose
Get familiar with Property Validation
b) Problem Statement

Write an Active-X dll implementing the DoValidateProperty method for populating the value for the “Pressure
Drop” of Relief Device, “Pressure Drop” is a new property for Relief Device, which is difference of Oper Max
Pressure between two piperuns connected to Relief Device. When one of Oper Max Pressures is changed, Validation
code should be fired and calculate the value for the “Pressure Drop”

c) Solution

1. Some Relief Devices have more than two piperuns connected to them, select one with only two
piperuns connected.

146 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

¢ Example code

23. ITEM VALIDATION (1)

a) Purpose
Get familiar with Item Validation
b) Problem Statement

Write an Active-X dll implementing the DoValidateltem method for creating a value for the Name of Vessel when a
vessel is placed on drawing. Vessel name is combination of “T” and SP_ID

c) Solution

¢ Example code

24. ITEM VALIDATION (2)

a) Purpose
Get familiar with Item Validation

b) Problem Statement

Write an Active-X dll implementing the DoValidateltem method to clean the OperFluidCode if the line number label
is deleted from the Piperun.

c) Solution

¢ Example code

25. ITEM VALIDATION (3)

a) Purpose
Get familiar with Item Validation
b) Problem Statement

Write an Active-X dIl implementing the DoValidateltem method to write a log file with all information about
who/when place, delete, and modify items.

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 147

c) Solution

¢ Example code

26. MODIFY PLANTITEM VALIDATION

a) Purpose
Get familiar with Plantltem Validation Code.

b) Problem Statement

Modify the delivered Plantltem Validation code to keep the original tag sequence no when copy/paste assembly.

c) Solution

¢ Example code

27. MODIFY ITEMTAG VALIDATION

a) Purpose
Get familiar with ItemTag Validation Code.
b) Problem Statement

Modify the delivered ItemTag Validate code to allow ItemTag of PipeRun including NominalDiameter.

c) Solution

¢ Example code

28. MoDIFY IMPORT CODE

a) Purpose
Get familiar with Import Code.
b) Problem Statement

Modify the delivered Import code to allow import more properties for Equipment, new properties such as “Height”
of vessel, and/or a user defined property.

c) Solution

¢ Example code

148 SmartPlant P&ID 2014 R1 Automation Programming with VB Labs

29. NEW MOCRO FOR INSTRUMENT REPORT

a) Purpose
Create new macro to enhance the functionarity of Instrument Report.
b) Problem Statement

Write a macro for Instrument Report to obtain what items that connected the instrumentation through “Connect to
process” SignalRun. Then print out the ItemTag of the connected item if it is a Piperun, or the ItemTag of its parent
if it is Nozzle.

c) Solution

1. “Connect to process” SignalRun is actually a special PipeRun, whose PipeRunType is "Conn to
process/supply"
2. You may limit your code to only report the items if they are PipeRun or Nozzle

¢ Example code

30. IMPROVEMENT OF FROM/TO MACRO

a) Purpose

To improve the functionality of From/To Macro

b) Problem Statement

Modify the the From/To Macro to not reporting Branch Piperuns.
c) Solution

¢ Example code

SmartPlant P&ID 2014 R1 Automation Programming with VB Labs 149

