프로젝트

일반

사용자정보

개정판 ef414ad3

IDef414ad392372ead57332cc70a2ae0f0f87bed2a
상위 c90cc6d3
하위 f500705a

함의성이(가) 4년 이상 전에 추가함

issue #1366: fix tile

차이점 보기:

DTI_PID/WebServer/app/recognition/index.py
60 60
        data_path = os.path.join(os.path.dirname(os.path.realpath(__file__)) + '\\..\\..\\symbol_training\\Data\\', data['name'])
61 61

  
62 62
        boxes = test_doftech_all_images.get_symbol(imgs, data['name'], root_path=data_path, trained_model1=os.path.join(data_path, 'checkpoint', data['name'] + "_only_params.pth"), \
63
                                                   trained_model2=None, save=False)
63
                                                   trained_model2=None, save=True)
64 64

  
65 65
        return jsonify({'symbol_box': boxes[0]})
66 66

  
DTI_PID/WebServer/symbol_recognition/test_doftech_all_images.py
205 205
            logits = model(data)
206 206
            predictions = post_processing(logits, opt.image_size, DOFTECH_CLASSES, model.anchors, opt.conf_threshold,
207 207
                                          opt.nms_threshold)
208
        output_image = cv2.cvtColor(np.array(pil_image.img), cv2.COLOR_RGB2BGR)
208 209
        if len(predictions) != 0:
209 210
            predictions = predictions[0]
210
            output_image = cv2.cvtColor(np.array(pil_image.img), cv2.COLOR_RGB2BGR)
211
            #output_image = cv2.cvtColor(np.array(pil_image.img), cv2.COLOR_RGB2BGR)
211 212
            for pred in predictions:
212 213
                if opc == True and pred[5] in bigs:
213 214
                    if pred[4] > 0.4:#pred[5] == "opc" and pred[4] > 0.4:  # Classification threshold
......
229 230
                            output_image, pred[5] + ' : %.2f' % pred[4],
230 231
                            (xmin, ymin + text_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1,
231 232
                            (255, 255, 255), 1)
232
                elif  opc == False and pred[5] not in bigs:
233
                elif opc == False and pred[5] not in bigs:
233 234
                    if pred[4] > 0.1:  # Classification threshold
234 235
                        xmin = int(max(pred[0] / width_ratio, 0))
235 236
                        ymin = int(max(pred[1] / height_ratio, 0))
......
250 251
                            (xmin, ymin + text_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1,
251 252
                            (255, 255, 255), 1)
252 253
            # -----------------------fill king image--------------------------------------
253
                if save_root:
254
                    cv2.imwrite(save_root+"{}_prediction.png".format(idx), output_image)
255 254
            pil_image.setObjectNum(len(predictions))
255
        if save_root:
256
            cv2.imwrite(save_root+"{}_prediction.png".format(idx), output_image)
256 257
    return symbol_list
257 258

  
258 259
def merge_fn(total_img, total_symbole_list, save_root=None):
......
303 304
            t_y = 0 if row == 0 else row * overlap_size
304 305
            t_x = 0 if col == 0 else col * overlap_size
305 306

  
306
            bbox = (t_y, t_x, t_y + patch_size, t_x + patch_size)
307
            bbox = (t_x, t_y, t_x + patch_size, t_y + patch_size)
307 308

  
308 309
            crop_img = image.crop(bbox)
309
            patch = Patch(t_x, t_y, crop_img, True)
310
            patch = Patch(t_y, t_x, crop_img, True)
310 311
            tile_info_list.append(patch)
311 312

  
312 313
    return tile_info_list

내보내기 Unified diff

클립보드 이미지 추가 (최대 크기: 500 MB)