markus / MarkupToPDF / Controls / Common / MathSet.cs @ e65e8c5c
이력 | 보기 | 이력해설 | 다운로드 (14.8 KB)
1 |
using System; |
---|---|
2 |
using System.Collections.Generic; |
3 |
using System.Linq; |
4 |
using System.Windows; |
5 |
|
6 |
namespace MarkupToPDF.Controls.Common |
7 |
{ |
8 |
public class MathSet |
9 |
{ |
10 |
private const double Rad2Deg = 180.0 / Math.PI; |
11 |
private const double Deg2Rad = Math.PI / 180.0; |
12 |
private const double UnitAngle = 15; |
13 |
|
14 |
public static List<double> angleSet = new List<double>(); |
15 |
|
16 |
public static double getMultipleAngle(double increase, double YourAngle) |
17 |
{ |
18 |
angleSet.Clear(); |
19 |
|
20 |
for (double i = 0; i <= 360; i += increase) |
21 |
{ |
22 |
angleSet.Add(i); |
23 |
} |
24 |
|
25 |
if (YourAngle < 0) |
26 |
{ |
27 |
YourAngle += 360; |
28 |
} |
29 |
double TargetData = YourAngle; |
30 |
double NearAngle = 0; |
31 |
double k = 0; |
32 |
|
33 |
foreach (var item in angleSet) |
34 |
{ |
35 |
double j = 0; |
36 |
j = TargetData - item; |
37 |
j = j < 0 ? -j : j; |
38 |
if (j < k) |
39 |
{ |
40 |
NearAngle = item; |
41 |
} |
42 |
k = j; |
43 |
} |
44 |
return NearAngle; |
45 |
} |
46 |
|
47 |
public static Point getNearPoint(List<Point> pointList, Point setPoint) |
48 |
{ |
49 |
Point nearPoint = pointList.Select |
50 |
(n => new |
51 |
{ |
52 |
n, |
53 |
distance = Math.Sqrt |
54 |
( |
55 |
Math.Pow( |
56 |
(n.X - setPoint.X), 2 |
57 |
) |
58 |
|
59 |
+ System.Math.Pow |
60 |
( |
61 |
(n.Y - setPoint.Y), 2 |
62 |
) |
63 |
) |
64 |
} |
65 |
).OrderBy(p => p.distance).First().n; |
66 |
|
67 |
return nearPoint; |
68 |
} |
69 |
|
70 |
public class ClipLine |
71 |
{ |
72 |
public static int DONT_INTERSECT = -0x01; |
73 |
public static int COLLINEAR = 0x00; |
74 |
public static int INTERSECT = 0x01; |
75 |
public static double TOLER = 0.0; |
76 |
|
77 |
public Point _start; |
78 |
public Point _end; |
79 |
|
80 |
public ClipLine(Point start, Point end) |
81 |
{ |
82 |
_start = start; |
83 |
_end = end; |
84 |
} |
85 |
|
86 |
public bool IsLeftSide(Point pt) |
87 |
{ |
88 |
double dx1 = _end.X - _start.X; |
89 |
double dy1 = _end.Y - _start.Y; |
90 |
double dx2 = pt.X - _start.X; |
91 |
double dy2 = pt.Y - _start.Y; |
92 |
|
93 |
return ((dx1 * dy2 - dy1 * dx2) > 0.0); |
94 |
} |
95 |
|
96 |
public bool IsRightSide(Point pt) |
97 |
{ |
98 |
double dx1 = _end.X - _start.X; |
99 |
double dy1 = _end.Y - _start.Y; |
100 |
double dx2 = pt.X - _start.X; |
101 |
double dy2 = pt.Y - _start.Y; |
102 |
|
103 |
return ((dx1 * dy2 - dy1 * dx2) < 0.0); |
104 |
} |
105 |
|
106 |
/// <summary> |
107 |
/// get intersection point between this and line2d |
108 |
/// </summary> |
109 |
/// <author>humkyung</author> |
110 |
/// <date>2012.08.30</date> |
111 |
/// <param name="intsec"></param> |
112 |
/// <param name="line2d"></param> |
113 |
/// <returns></returns> |
114 |
public int IntersectWith(ref Point intsec, ClipLine line2d) |
115 |
{ |
116 |
double Ax = 0.0, Bx = 0.0, Cx = 0.0, Ay = 0.0, By = 0.0, Cy = 0.0, d = 0.0, e = 0.0, f = 0.0; |
117 |
double x1lo = 0.0, x1hi = 0.0, y1lo = 0.0, y1hi = 0.0; |
118 |
|
119 |
Ax = _end.X - _start.X; |
120 |
Bx = line2d._start.X - line2d._end.X; |
121 |
// X bound box test |
122 |
if (Ax < 0.0) |
123 |
{ |
124 |
x1lo = _end.X; |
125 |
x1hi = _start.X; |
126 |
} |
127 |
else |
128 |
{ |
129 |
x1hi = _end.X; |
130 |
x1lo = _start.X; |
131 |
} |
132 |
|
133 |
if (Bx > 0.0) |
134 |
{ |
135 |
if ((x1hi < line2d._end.X) || (line2d._start.X < x1lo)) return ClipLine.DONT_INTERSECT; |
136 |
} |
137 |
else |
138 |
{ |
139 |
if ((x1hi < line2d._start.X) || (line2d._end.X < x1lo)) return ClipLine.DONT_INTERSECT; |
140 |
} |
141 |
|
142 |
Ay = _end.Y - _start.Y; |
143 |
By = line2d._start.Y - line2d._end.Y; |
144 |
/* Y bound box test*/ |
145 |
if (Ay < 0) |
146 |
{ |
147 |
y1lo = _end.Y; |
148 |
y1hi = _start.Y; |
149 |
} |
150 |
else |
151 |
{ |
152 |
y1hi = _end.Y; |
153 |
y1lo = _start.Y; |
154 |
} |
155 |
|
156 |
if (By > 0) |
157 |
{ |
158 |
if ((y1hi < line2d._end.Y) || (line2d._start.Y < y1lo)) return ClipLine.DONT_INTERSECT; |
159 |
} |
160 |
else |
161 |
{ |
162 |
if ((y1hi < line2d._start.Y) || (line2d._end.Y < y1lo)) return ClipLine.DONT_INTERSECT; |
163 |
} |
164 |
|
165 |
Cx = _start.X - line2d._start.X; |
166 |
Cy = _start.Y - line2d._start.Y; |
167 |
f = Ay * Bx - Ax * By; /* both denominator*/ |
168 |
/// lines are collinear. |
169 |
if (0.0 == f) return ClipLine.COLLINEAR; |
170 |
|
171 |
d = By * Cx - Bx * Cy; /* alpha numerator*/ |
172 |
if (f > 0.0) |
173 |
{ /* alpha tests*/ |
174 |
if ((d < (0 + ClipLine.TOLER)) || (d > (f - ClipLine.TOLER))) return ClipLine.DONT_INTERSECT; |
175 |
} |
176 |
else |
177 |
{ |
178 |
if ((d > (0 - ClipLine.TOLER)) || (d < (f + ClipLine.TOLER))) return ClipLine.DONT_INTERSECT; |
179 |
} |
180 |
|
181 |
e = Ax * Cy - Ay * Cx; /* beta numerator*/ |
182 |
if (f > 0.0) |
183 |
{ /* beta tests*/ |
184 |
if ((e < (0 + ClipLine.TOLER)) || (e > (f - ClipLine.TOLER))) return ClipLine.DONT_INTERSECT; |
185 |
} |
186 |
else |
187 |
{ |
188 |
if ((e > (0 - ClipLine.TOLER)) || (e < (f + ClipLine.TOLER))) return ClipLine.DONT_INTERSECT; |
189 |
} |
190 |
|
191 |
/*compute intersection coordinates*/ |
192 |
double alpha = d / f; |
193 |
|
194 |
if (_start.X == _end.X) |
195 |
intsec.X = _start.X; |
196 |
else intsec.X = _start.X + alpha * Ax; |
197 |
if (_start.Y == _end.Y) |
198 |
intsec.Y = _start.Y; |
199 |
else intsec.Y = _start.Y + alpha * Ay; |
200 |
|
201 |
return ClipLine.INTERSECT; |
202 |
} |
203 |
} |
204 |
|
205 |
public class ClipRect |
206 |
{ |
207 |
public Point center; |
208 |
public double width, height, angle; /// angle is degree |
209 |
|
210 |
public int IntersectWith(ref Point intsec, ClipLine line2d) |
211 |
{ |
212 |
double radians = Math.PI * angle / 180.0; |
213 |
double cs = Math.Cos(radians), sn = Math.Sin(radians); |
214 |
Point[] corner = new Point[4]; |
215 |
corner[0].X = center.X - width * 0.5; |
216 |
corner[0].Y = center.Y - height * 0.5; |
217 |
corner[1] = corner[0]; |
218 |
corner[1].X += width; |
219 |
corner[2] = corner[1]; |
220 |
corner[2].Y += height; |
221 |
corner[3] = corner[2]; |
222 |
corner[3].X -= width; |
223 |
/// rotate 4 corners about angle |
224 |
for (int i = 0; i < corner.Length; ++i) |
225 |
{ |
226 |
double ptx = corner[i].X - center.X; |
227 |
double pty = corner[i].Y - center.Y; |
228 |
corner[i].X = center.X + ((cs * ptx) - (sn * pty)); |
229 |
corner[i].Y = center.Y + ((sn * ptx) + (cs * pty)); |
230 |
} |
231 |
|
232 |
for (int i = 0; i < corner.Length; ++i) |
233 |
{ |
234 |
int si = i % corner.Length, ei = (i + 1) % corner.Length; |
235 |
if (ClipLine.INTERSECT == line2d.IntersectWith(ref intsec, new ClipLine(corner[si], corner[ei]))) |
236 |
{ |
237 |
return ClipLine.INTERSECT; |
238 |
} |
239 |
} |
240 |
|
241 |
return ClipLine.DONT_INTERSECT; |
242 |
} |
243 |
} |
244 |
|
245 |
public static double AngleMethod(Point StartPoint, Point EndPoint) |
246 |
{ |
247 |
return Math.Abs(Math.Atan2(EndPoint.X - StartPoint.X, StartPoint.Y - EndPoint.Y) * Rad2Deg); |
248 |
} |
249 |
|
250 |
public static double DegreesToRadians(double angle) |
251 |
{ |
252 |
return ((angle * Math.PI) / 180f); |
253 |
} |
254 |
|
255 |
public static double DistanceTo(Point p1, Point p2) |
256 |
{ |
257 |
double dx = p2.X - p1.X; |
258 |
double dy = p2.Y - p1.Y; |
259 |
return Math.Sqrt(dx * dx + dy * dy); |
260 |
} |
261 |
|
262 |
public static Point getMiddlePoint(Point p1, Point p2) |
263 |
{ |
264 |
return new Point { X = (p1.X + p2.X) * 0.5, Y = (p1.Y + p2.Y) * 0.5 }; |
265 |
} |
266 |
|
267 |
/// <summary> |
268 |
/// return area of polygon |
269 |
/// </summary> |
270 |
/// <author>humkyung</author> |
271 |
/// <date>2012.07.04</date> |
272 |
/// <param name="points"></param> |
273 |
/// <returns></returns> |
274 |
public static double AreaOf(List<Point> points) |
275 |
{ |
276 |
double res = 0; |
277 |
int p = 0, q = 0; |
278 |
|
279 |
for (p = points.Count - 1, q = 0; q < points.Count; p = q++) |
280 |
{ |
281 |
res += points[p].X * points[q].Y - points[p].Y * points[q].X; |
282 |
} |
283 |
|
284 |
return res; |
285 |
} |
286 |
|
287 |
/// <summary> |
288 |
/// return normal vector from p1 to p2 |
289 |
/// </summary> |
290 |
/// <author>humkyung</author> |
291 |
/// <date>2012.07.19</date> |
292 |
/// <param name="p1"></param> |
293 |
/// <param name="p2"></param> |
294 |
/// <returns></returns> |
295 |
public static Point GetNormVectorBetween(Point p1, Point p2) |
296 |
{ |
297 |
Point res = new Point(); |
298 |
|
299 |
double d = MathSet.DistanceTo(p1, p2); |
300 |
if (d > 0) |
301 |
{ |
302 |
res.X = (p2.X - p1.X) / d; |
303 |
res.Y = (p2.Y - p1.Y) / d; |
304 |
} |
305 |
|
306 |
return res; |
307 |
} |
308 |
|
309 |
public static Point FindCentroid(List<Point> pntSet) |
310 |
{ |
311 |
Double getThePointX = new Double(); |
312 |
Double getThePointY = new Double(); |
313 |
|
314 |
for (int i = 0; i < pntSet.Count; i++) |
315 |
{ |
316 |
int ReIndex = (i + pntSet.Count / 2) % pntSet.Count; |
317 |
Point p = (MathSet.getMiddlePoint(pntSet[i], pntSet[ReIndex])); |
318 |
getThePointX += p.X; |
319 |
getThePointY += p.Y; |
320 |
} |
321 |
double count = Convert.ToDouble(pntSet.Count); |
322 |
//return new Point(getThePointX/Convert.ToDouble(pntSet.Count(),getThePointY/Convert.ToDouble(pntSet.Count()); |
323 |
return new Point(getThePointX / count, getThePointY / count); |
324 |
} |
325 |
|
326 |
/// <summary> |
327 |
/// org 기준으로 dest를 dAngle(in degree)만큼 회전 시킨다. |
328 |
/// </summary> |
329 |
/// <param name="org"></param> |
330 |
/// <param name="dest"></param> |
331 |
/// <param name="dAngle"></param> |
332 |
/// <returns></returns> |
333 |
public static Point RotateAbout(Point org, Point dest, double dAngle) |
334 |
{ |
335 |
var transform = new RotateTransform() { Angle = dAngle, CenterX = org.X, CenterY = org.Y }; |
336 |
return transform.Transform(dest); |
337 |
} |
338 |
|
339 |
public static double getAngle(double x1, double y1, double x2, double y2) |
340 |
{ |
341 |
double alpha = 0; |
342 |
double dx = x2 - x1; |
343 |
double dy = y2 - y1; |
344 |
double l = Math.Sqrt(dx * dx + dy * dy); |
345 |
|
346 |
if (l > 0) |
347 |
{ |
348 |
alpha = Math.Acos(dx / l); |
349 |
double cross = MathSet.CrossProduct(1, 0, dx, dy); |
350 |
if (cross < 0) alpha = -alpha; |
351 |
|
352 |
alpha *= MathSet.Rad2Deg; |
353 |
} |
354 |
else |
355 |
{ |
356 |
alpha = 0; |
357 |
} |
358 |
|
359 |
return alpha; |
360 |
} |
361 |
|
362 |
public static double DotProduct(double x1, double y1, double x2, double y2) |
363 |
{ |
364 |
return (x1 * x2 + y1 * y2); |
365 |
} |
366 |
|
367 |
public static double CrossProduct(double x1, double y1, double x2, double y2) |
368 |
{ |
369 |
return (x1 * y2 - y1 * x2); |
370 |
} |
371 |
|
372 |
/// <summary> |
373 |
/// return angle in degree between given two vectors |
374 |
/// </summary> |
375 |
/// <author>humkyung</author> |
376 |
/// <date>2018.05.09</date> |
377 |
/// <param name="vec1"></param> |
378 |
/// <param name="vec2"></param> |
379 |
/// <returns></returns> |
380 |
public static double getAngleBetweenVectors(Point vec1, Point vec2) |
381 |
{ |
382 |
double dot = MathSet.DotProduct(vec1.X, vec1.Y, vec2.X, vec2.Y); |
383 |
double length1 = Math.Sqrt(vec1.X * vec1.X + vec1.Y * vec1.Y); |
384 |
double length2 = Math.Sqrt(vec2.X * vec2.X + vec2.Y * vec2.Y); |
385 |
double cross = MathSet.CrossProduct(vec1.X, vec1.Y, vec2.X, vec2.Y); |
386 |
double radian = Math.Acos(dot / (length1 * length2)); |
387 |
|
388 |
return (cross > 0) ? radian * MathSet.Rad2Deg : -(radian * MathSet.Rad2Deg); |
389 |
} |
390 |
|
391 |
// 사용용도가 불분명함. |
392 |
public static string returnAngleString(Point start, ref Point end, bool PressShift) |
393 |
{ |
394 |
double angle = MathSet.getAngle(start.X, start.Y, end.X, end.Y); |
395 |
double approxAngle = MathSet.getMultipleAngle(UnitAngle, angle); |
396 |
|
397 |
if (PressShift) |
398 |
{ |
399 |
double distance = MathSet.DistanceTo(start, end); |
400 |
end = MathSet.RotateAbout(start, new Point(start.X + distance, start.Y), approxAngle); |
401 |
return String.Format("{1}({0})", approxAngle.ToString("0.#") + "°", Math.Abs(approxAngle - 360).ToString("0.#") + "°"); |
402 |
} |
403 |
else |
404 |
{ |
405 |
angle *= -1; |
406 |
|
407 |
if (angle < 0) |
408 |
{ |
409 |
angle = angle + 360; |
410 |
} |
411 |
return String.Format("{0}", angle.ToString("0.#") + "°"); |
412 |
} |
413 |
} |
414 |
|
415 |
/// <summary> |
416 |
/// returnAngleString을 변경하여 수정 |
417 |
/// 상단 컨트롤에 Angle값을 보여주기 위해 수정함. |
418 |
/// </summary> |
419 |
/// <param name="start"></param> |
420 |
/// <param name="end"></param> |
421 |
/// <param name="PressShift"></param> |
422 |
/// <returns></returns> |
423 |
public static double returnAngle(Point start, ref Point end, bool PressShift) |
424 |
{ |
425 |
double angle = MathSet.getAngle(start.X, start.Y, end.X, end.Y); |
426 |
double approxAngle = MathSet.getMultipleAngle(UnitAngle, angle); |
427 |
|
428 |
if (PressShift) |
429 |
{ |
430 |
double distance = MathSet.DistanceTo(start, end); |
431 |
end = MathSet.RotateAbout(start, new Point(start.X + distance, start.Y), approxAngle); |
432 |
|
433 |
angle = approxAngle; |
434 |
} |
435 |
|
436 |
if (angle < 0) |
437 |
{ |
438 |
angle = 360 + angle; |
439 |
} |
440 |
|
441 |
return angle; |
442 |
} |
443 |
|
444 |
public static Point getRectMiddlePoint(Rect data) |
445 |
{ |
446 |
Point startP = new Point(data.X, data.Y); |
447 |
Point endP = new Point(data.Right, data.Bottom); |
448 |
return MathSet.getMiddlePoint(startP, endP); |
449 |
} |
450 |
} |
451 |
} |